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Abstract—Molly is a program that compiles cryptographic
protocol roles written in a high-level notation into straight-line
programs in an intermediate-level imperative language, suitable
for implementation in a conventional programming language. In
order to define and prove the correctness of this compilation,
we define transcripts, a denotational semantics for protocol roles
based on an axiomatization of the runtime. A notable feature
of our approach is that we assume that encryption may be
randomized. Thus, at the runtime level we treat encryption as
a relation rather than a function. Molly is developed in Coq,
and includes a machine-checked proof that the procedure it
constructs is correct with respect to the transcript semantics.
Using Coq’s extraction mechanism, one can build an efficient
functional program for compilation.

I. INTRODUCTION

Cryptoprotocols are short sequences of messages provid-
ing authentication and confidentiality, and establishing fresh
shared keys. They are surprisingly hard to get right: active
adversaries can manipulate compliant principals to obtain
messages that undermine protocol goals. Moreover, they are
surprisingly hard to implement correctly, as it may be ambigu-
ous which checks to make on messages that are received.

A large body of research specifies protocols symbolically
and uses formal methods to reason about their behavior. In
this approach, different forms of protocol narrations describe
cryptographic protocols. They are succinct and approachable
but have varying semantics, and leave many implementation
details implicit. Their semantics is complicated by the fact
that the specifications of messages in protocol narrations
generally consist of terms in a term algebra, while the actual
messages in protocol executions are bitstrings. Moreover, since
most cryptographic operations are randomized, the term-level
specifications and the concrete messages are not connected by
a function, but only by a relation.

When the protocol narration describes a message to be
sent—generally specified as a term in a term algebra—a
sequence of actions must construct a concrete instance of
the specified transmission, and doing this correctly requires
a degree of care. Received messages are even more difficult;
we must orchestrate a sequence of checks to ensure the
received concrete message is a genuine instance of the protocol
narration description.

In this paper, we propose a solution to this challenge,
namely generating the actions on concrete messages to con-
struct outgoing messages and to check incoming messages.
We also carefully present the correctness conditions that define
this problem. We have proved that our solution satisfies these

conditions using Coq, although this paper does not emphasize
the specifics of the Coq formalization and proof.1

Generality is important, here. Many different cryptographic
primitives might be used, and a compiler’s correctness should
be independent of the choice of (e.g.) one authenticated
symmetric encryption or another. In our development, the
assumption that matters most is that, when a successful
decryption of ciphertext c with key k yields plaintext p, then c
is among the many values that the randomized encryption of p
with k could yield. This simple principle matches the notion of
authenticated encryption well, and thus puts only the lightest
constraint on what algorithm will be chosen to generate the
encryptions. We will also assume a converse, namely that
when c is a result of encrypting p with k, then decryption with
k will succeed on c, yielding p. The corresponding principle
for asymmetric encryption requires a little more care, as we
must have a way to associate the two members k, k−1, one of
which will be used to encrypt, and the other of which may be
used to decrypt. However, all of these requirements are light
and easily formalized.

Pairing concrete messages together requires a similarly
light constraint on pairing and the first and second projection
operations π1 and π2, a sort of round-trip principle or unique
parseability constraint on concrete messages:

if π1(m) = p1 and π2(m) = p2,
then m is the result of pairing p1 and p2.

Our framework remains correct for a wide variety of message
formats and cryptographic operators, because it depends on
very little about what the operations do. This motivates using
an abstract protocol specification and compiling it to proce-
dures that run on concrete messages. The rights and wrongs
of the protocol and compilation are independent most of the
choice of how to represent the messages and what crypto
operators to use.

Which raises the question, what notion of correctness
applies? In this paper, we consider only what applies to a
compiler, generating procedures to execute locally on a single
protocol participant. We do not need to do any protocol
analysis or make cryptographic claims. Instead, we argue only
that, whatever cryptographic primitives are appropriate to use
for the protocol role definition, if those same primitives are
linked against the compiler output, the resulting target code
will execute only runs that the protocol definition permitted.

1A comprehensive account of this aspect of the work is on the arXiv
[18] and the full Coq development is available on Github https://github.com/
dandougherty/Molly.
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Naturally, a good compiler will also generate target code
that runs effectively in response to a large class of received
messages; our compiler has this property also. However, we
consider it important to separate the compiler correctness
claim, which is a local claim that is parametric in the primitive
operations, from global protocol analysis problems. We clarify
our correctness claim in Section IV.

Abstract messages are terms in a term algebra; the concrete
messages are bitstrings of some sort. Many ways of relating
terms to bitstrings are possible, and we will refer to a particular
scheme for representing terms via concrete messages as a
protocol actually runs as a runtime. We impose only a few light
constraints on runtimes: the axioms we assume are presented
in Section VIII. The code generated by our compiler can be
linked with one of a range of runtime libraries to format
the messages as bitstrings in a particular way, including to
implement cryptographic primitives. We often call concrete
messages runtime values.

A. Contributions

There were a number of key goals that shaped our work
reported here.

Code Generation for an Intermediate Language. Function-
ally, Molly is a partial function from protocol roles to procs;
the latter are essentially the procs of Ramsdell’s Roletran
[35]. A proc is a sequence of intermediate-level instructions.
Procs are straightforward to translate into concrete executable
programming languages, but also easy to characterize seman-
tically.

Transcripts for Roles. The crucial first step in proving cor-
rectness of this compilation is defining the notion of transcript
for a role: a transcript is a sequence of runtime values which
might arise as a runtime execution of the role. Transcripts live
in a domain—bitstrings—independent of symbolic messages.
It seems suitable to say that role transcripts yield a denota-
tional semantics for protocol roles: the meaning of a role is
the set of its transcripts. Put another way, the meaning of a
role is its set of observable actions.

A semantics for individual roles, as treated here, differs
from a semantics for protocol executions, which comprise
interactions between individual role executions. The former,
our transcripts, are merely “sections” of the latter, consisting
of the local events observable by one single principal.

Treatment of Randomized Encryption. Because many cryp-
tographic operations are randomized, the bitstrings at runtime
are not in one-to-one correlation with the symbolic terms of
a role. In particular calling an encryption or digital signature
primitive on the same message twice, with the same key, does
not yield the same bitstring result. This has the semantic conse-
quence that role transcripts are generated from relations from
abstract terms to concrete runtime values (the “valuations” of
Definition 1).

Axiomatizing the Runtime. Our correctness theorem is about
transcripts; transcripts are sequences of runtime values, so we
require some analysis of the runtime. A key feature of our
approach is that we do not define a runtime for our proof,

rather we simply isolate surprisingly few mild assumptions
about the runtime we require for the proof. This strategy has
the obvious benefits of broadening the applicability of the
result and of identifying the principles that make compilation
correct.

A Machine-Checked Correctness Theorem. Our main theo-
rem, the Reflecting Transcripts theorem (Thm. 8), states that
if role rl is compiled to procedure pr, any transcript for pr is a
transcript for rl. The proof of the theorem is formally verified
in Coq.

Proof-Theoretic View of Code Generation. We have orga-
nized our compilation according to the Dolev-Yao model [17],
by which we mean that we view the principal executing a role
as manipulating term-structured items according to derivation
rules. Thus, reflecting much previous work, dating back at
least to Paulson and Marrero et al. in the 1990s [30], [14], we
take a proof-theoretic view of the actions of our compiler. It
emits code by executing steps that we formalize as inference
rules, thus generating derivations in a Gentzen-Prawitz natural
deduction calculus [19], [34].

Compilability and Executability. This logical approach to
compilation makes it easy to characterize the input roles on
which compilation succeeds. And this in turn allows us to
motivate and define a notion of executability for a role in
terms of the well-known notion of Dolev-Yao derivability.

B. Scope
Our goals in this paper are focused. We are not concerned

with the details of cryptographic libraries, or of proofs that
they meet their cryptographic requirements, on which much
care has been expended by others. Indeed, our axiomatic
approach to the operations on concrete messages means that
verified cryptographic libraries fit directly with our approach;
our work amplifies their value. Similarly, we have not con-
cerned ourselves with the details of message formats, for
instance the ASN.1 encodings; again, the axiomatic approach
indicates light constraints for incorporating libraries of that
kind. Moreover, we have not incorporated conditionals and
other control structures into our source language. Indeed, our
group has successfully added control structures and concrete
message formats with considerable flexibility in related work
on Zappa (mentioned in Section XI).

In this paper, we focus exclusively on the problem of
relating actions on abstract terms with concrete messages,
identifying a minimal core of ideas that suffice for expressing
correctness and proving it in a fully mechanized way. This
establishes the essential semantic core that justifies using par-
ticular implementation libraries or incorporating more flexible
control.2

II. EXAMPLE: THE NEEDHAM-SCHROEDER-LOWE
RESPONDER

We consider a small example in order to introduce the main
ideas of the compiler. We discuss it informally here and present

2The module Examples.v in the Coq development at https://github.com/
dandougherty/Molly presents some concrete protocol roles and their transla-
tions.
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it in full detail in the appendix.
The Needham-Schroeder-Lowe protocol is simple and fa-

miliar, which is helpful for our purposes. We will focus on the
responder; our compiler works on different roles independently
in any case. The procedure that implements the responder will
need to be given a communications channel ch such as a socket
to send and receive messages on. It also needs to be given its
own name B as well as B’s public and private keys as a key
pair (KB ,KB

−1). We will assume that it is also given the
name A of an intended peer and A’s public encryption key KA.
These are the parameters of the role. There are two receptions,
the first and last events in the role, with a transmission in
between them:

{|Na, A|}KB

ch��

{|Na, Nb, B|}KA
{|Nb|}KB

ch��
• +3 • +3

ch
OO

•

The bullets here represent the reception or transmission events,
depending on the direction of the single arrow, and the double
arrow represents the control flow: subsequent events cannot
occur until previous events have succeeded. Na is learnt by
using K−1

B to decrypt the encryption in the first message; Nb

is to be generated freshly by B, who uses Ka to prepare
the encryption; and Nb is confirmed in the last message after
decryption using K−1

B . A reception succeeds only when the
incoming message is found to be of the required form, and a
transmission succeeds only when the principal has constructed
a message of the required form.

Thus, a protocol role specifies a sequence of actions, where
the actions include transmissions and receptions. Actions also
include receiving parameters at the start, as mentioned above.
The value of Na is learnt from the first message, and the value
of Nb is generated by a library procedure.

We will define a protocol role specification to be a sequence
of actions, where each action’s content is a term in a term
algebra, like those ones shown in the example above; of course
Molly uses an ASCII rendering of the mathematical syntax
above (Section VI).

Molly produces target code consisting of procedures affec-
tionately known as procs. Procs are an intermediate language
for representing straight-line, single assignment cryptographic
programs. Procs can be translated–—given a suitable cryp-
tographic library—–into a conventional imperative programs.
A proc is a sequence of statements manipulating a set of
locations. Each statement is an Event, a Bind, or a Check.
Events express sends, receives, and input or output parameters:
the sequence of events in a proc defines the trace of the proc.
Checks are runtime checks, for example that a value stored
in a location has the required sort, or that two locations have
the same value, etc. A Bind statement Bind (t, v) e causes
the value named by e to be stored into the location v, which
never occurs as the target of another Bind statement. The term
t has no effect at runtime, but in the compiler proof serves to
express the invariant connection between the value e and an
term in the input role specification; see Section VII, Eq. (1).

Thus, the output of Molly for the last reception of the
NSL responder declares a receive event, and the message m
received from ch is read into a location using a bind statement.
An ensuing bind statement stores the plaintext resulting from
a decryption of m into a location; the decryption key K−1

B

has already been bound to a location after being obtained as
a parameter. The resulting value must equal the nonce B sent
in the previous event; a Check statement ensures this. Finally,
the results are returned to the caller.

The detailed version of this example in Section A sheds
substantial light on how these mechanisms work.

III. TRANSCRIPTS: ACTIONS ON RUNTIME VALUES

The externally visible actions of a protocol include accept-
ing a parameter, returning a result, sending a message over
a channel, and receiving a message over a channel. When
the messages and parameter values all belong to a domain of
runtime values, we call a sequence of these runtime actions a
transcript.

Clearly, a transcript is incompatible with a role if, for
example, the role starts by accepting a sequence of three
parameters, while the transcript contains one runtime value
as parameter followed by a message transmission, or if the
role sends a message before receiving two, but the transcript
receives two messages before sending one.

We say that a transcript tr is compatible with role rl, or rl-
compatible, iff they are of the same length, and for each index
up to the length tr engages in the same kind of action as rl.

This requires nothing about the runtime values of tr making
sense relative to the algebraic terms contained in the successive
actions of role rl. For instance, we want to insist that if role
rl specifies receives a symbolic pair, then the corresponding
runtime transcript value should be a runtime pair, and so on. To
express that, we will associate runtime values to the subterms
of terms in rl in a valuation such that the runtime operators
relate runtime values as the terms are related (as in Def. 1).

Cryptographic operators being randomized, the valuation
associating subterms and runtime values are relations rather
than functions. The same term t = {|t0|}K may be associated
with different runtime values r, r′ if they were generated at
different moments with different random contribution. The
relevant condition is that r and r′ should each be possible
results of encrypting some r0 associated with t0 with a runtime
key associated with K.

A fine point is that a protocol participant may have a public
encryption key K but not the corresponding decryption key
K−1, or conceivably K−1 but not K. Thus, when a role
involves {|t0|}K , it may have used a runtime value associated
with K to perform the encryption, or, if {|t0|}K is part of
a reception, it may have used one associated with K−1 to
decrypt {|t0|}K to obtain a runtime value associated with t0.

Thus, the association may not provide runtime values for
all of the syntactic subterms; for those K used only as keys
it should provide either a runtime value associated with K or
one associated with K−1.
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By contrast to terms containing encryptions, terms t for
elementary values such as names, keys, or nonces should be
associated with a single runtime value at all occurrences, since
it is a protocol goal that these values should be fixed. This
uniqueness is preserved by operations such as pairing and
hashing which are functional, not randomized. Thus, when
a pair term t = (t0, t1) is associated with a runtime value
r, there should be associations between t0 and some r0, and
between t0 and some r1, such that r = pair r0r1. Hashes
induce a similar requirement. Thus:

Definition 1: Let RT be a model of the runtime theory R.
A relation τ ⊆ Term×RT is a valuation iff:

1. ({|t0|}K , r) ∈ τ iff either (a) ∃r0, rK s.t. (t0, r0) ∈ τ ,
(K, rK) ∈ τ , and encr r0 rK r; or else
(b) ∃r0, r′K s.t. (t0, r0) ∈ τ , (K, r′K) ∈ τ , and
decr r r′K r0;

2. ((t0, t1)), r) ∈ τ iff ∃r0, r1 s.t. (t0, r0) ∈ τ , (t1, r1) ∈ τ ,
and pair r0 r1 = r;

3. (hash(t0), r) ∈ τ iff ∃r0 s.t. (t0, r0) ∈ τ and hash r0 =
r;

4. τ is a function on elementary terms;
5. If K is an asymmetric private key, (K, r) ∈ τ , and

(K−1, r′) ∈ τ , then pubof r = r′;
6. If t is elementary and (t, r) ∈ τ , then sort t = rtsort r;
7. ("s", r) ∈ τ implies r = quot s.

A relation τ is an rl-valuation iff it is a valuation, and each
term in an action of rl is in the domain of τ . ///

The first three clauses have a closure property on the domain
as a consequence. We say that a set T of terms is downward-
closed iff (i) {|t0|}t1 ∈ T implies t0 ∈ T and either t1 ∈ T
or t−1

1 ∈ T ; (ii) (t0, t1) ∈ T implies t0, t1 ∈ T ; and (iii)
hash(t0) ∈ T implies t0 ∈ T .

Now a valuation τ has a downward-closed domain.
The clauses 1(a) and 1(b) establish the two cases of item

(i) here, and clauses 2 and 3 establish (ii) and (iii).
Definition 2: Let rl be a role. Transcript tr is a rl-transcript

iff it is rl-compatible and there exists an rl-valuation τ such
that, for each i up to their common length, τ relates their ith

action. ///
Correspondingly, there is a notion of transcript for a proc
pr. We naturally say that a transcript tr is pr-compatible if
its actions match the actions in pr. Then, the analogue of a
valuation in the proc context is that of a store: an assignment
of runtime values to the locations of pr, and it is a pr-store
iff the value associated with the location in the target of each
Bind is a possible value of its source expression.

Definition 3: Let pr be a proc. Transcript tr is a pr-transcript
iff it is pr-compatible and there exists a pr-store associating
the location that is the target of each action to that runtime
value in tr. ///

IV. CRITERION OF CORRECTNESS

The correctness condition for a compiler is that, if it
compiles rl to pr, and tr is any pr-transcript, then tr is an rl-
transcript also. We express this by saying that transcripts are
reflected, i.e. back from the compilation target to its source.

One might expect to want a converse to this claim, which
would state that every rl-transcript should be a possible pr-
transcript, i.e. that no possible executions are lost. However,
in the context of randomized cryptographic operations, this
is unachievable. For instance, suppose a role is specified to
receive a particular digital signature and retransmit it. The
rl-transcripts as we defined them allow any sample of the
randomized signature algorithm for the second, retransmitted
occurrence, not just the same sample that was previously
received.

However, a compiled proc pr receives a single sample,
which it verifies and destructures. But depending on the
signature algorithm, the recipient, lacking the signing key,
may be unable to produce other samples. Thus, transcripts
in which the runtime value retransmitted in the second action
is a different sample are unimplementable for these signature
algorithms.

Looking for a narrower definition of rl-transcripts would be
arbitrary. In some cases, e.g. voting protocols, one wants an
implementation to re-randomize cryptographic units, so as to
unlink them for anonymity. It would be wrong to select an
overall definition that would rule this out. Rather, one would
want to adapt a compiler algorithm to emit procs to run in
different regions of the space of runtime transcripts, possibly
depending on the exact crytoprimitive in use.

Our correctness claim is a purely local, transcript-by-
transcript claim. By contrast, a global protocol execution
consists of a family of one or more transcripts representing
the behaviors of different principals during a protocol run.
We conjecture that these respect the predictions of symbolic
protocol analysis.

V. IDEAS SHAPING THE COMPILER

At a high level, the process of compiling is as follows.
Given an input role rl, we loop through the actions of rl, each
of which is an input, output, transmission, or reception of a
symbolic term. For each action we create an appropriate Bind
statement relating (i) the symbolic term, (ii) a proc location,
and (iii) a suitable proc expression. Furthermore, we then
saturate the proc: here we introduce this notion informally
here and describe it in more detail in Section VII-B.

Saturation: For an intuition about saturation, consider
what we must do to generate code to process the reception
of a value for the term (t0, t1). We will bind a reference to
(t0, t1) to a new location v, but will also want to generate
code that serves to ensure that an incoming value at runtime
is of the right form. We do this by emitting code for a binding
of t0 to another location v0 together with the constraint that
v0 is equal to the first projection of v . This binding (plus
the corresponding binding for t1) serves to check that any
incoming value really is a pair, since otherwise one or both
of the projections will fail at runtime. We also need code to
ensure that the value corresponding to t1 really is of the right
form . . . and so forth. When we get to the case of validating an
elementary value such as a name or a key, we emit a suitable
sort-check assertion.
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Saturation is the process of emitting all the bindings and
checks required for a proc to be closed under such obligations.
It is defined formally as an inference system (see Section VII
for sample inferences).

Saturation is not Syntax-Directed: There is a subtlety in
the process of deconstructing a received value. When we use
the rules to construct a saturated proc, we cannot apply them
in a naively syntax-directed way. In the course of analyzing a
reception we sometimes must use bindings that we can access
but which have not yet themselves been fully analyzed.

Example 1: Suppose we receive the pair

({|b|}k, {|k|}(En b k))

Assuming b and k are elementary, we can successfully analyze
this by (i) using the first component of the pair as decryption
key for the second component, thereby obtaining k, then (ii)
using k to decrypt the first component.

The net result is that we will generate bindings for the
following four terms

{|b|}k, {|k|}{|b|}k
, k, and b

in addition to the original pair.
Saturation works by applying any rule that can fire and

continuing until reaching a fixed point. This requires an
termination argument (Theorem = 7).

Invariants: We maintain invariants for the compilation
process that ensure that at the end of a successful compilation
of role rl to proc pr,

1. The events of role rl and the trace of proc pr are related
in the expected way, and

2. pr is saturated
These are the two properties that yield a proof of our core
correctness result, the Reflecting Transcripts theorem.

VI. DATA STRUCTURES

To describe the compilation process and its correctness
precisely we require an introduction to the data structures used
to represent roles and procs. It is convenient to first introduce
a polymorphic notion of “action,” represented by the Act data
type.

A. Actions

The Act parameterized data type is a useful device for tying
together parallel notions of “action” in roles, procs, and the
runtime. If X is a Type, Act X is the type whose constructors
are

Prm : X → Act X Rcv : X → X → Act X

Ret : X → Act X Snd : X → X → Act X

The constructor Prm builds parameters, Ret builds return
values, and Rcv and Snd builds values received and sent. These
“values” will be symbolic terms, locations, or runtime values,
as appropriate to the context.

B. Sorts

Symbolic terms, proc expressions, and runtime val-
ues obey a common sort discipline. The sorts are
chan,name,data , skey,akey, ikey, andmesg .

C. Symbolic Terms

We begin with a set of atoms, natural numbers tagged
with a constructor indicating its sort in an obvious way. We
close under the operations of pairing, encryption, hashing, and
quotation.

Term ::= Atom | SkSkey | AkAkey | IkAkey |
Pr Term Term | EnTerm Term |
HsTerm | Qt string

Akey := Sv n | Av n

Atom ::= Chn | Txn | Dtn | Nmn |

The elementary terms are the terms whose top-level con-
structor is not one of Pr, En, Hs, or Qt. A symbolic key
pair is an ordered pair ((Ik (Av n)), (Ak (Av n))) consisting
of a private key and a public key—in that order—which are
inverses for asymmetric encryption.

The inverse function t−1 on algebraic terms t is not named
by a constructor, but it is definable: if (t1, t2) is a symbolic
key pair then t1

−1 = t2 and t2
−1 = t1; otherwise t−1 = t.

D. Roles

These are the inputs to Molly. A role is a sequence of
(Act Term). Thus a role of a protocol specifies the parameters,
the messages to be sent and received, and the outputs.

Our roles are essentially the roles of CPSA [24], omitting
the specification there of the “uniquely originating” terms. This
notion is crucial to analysis but not relevant to compiling.

E. Procs

These are the outputs of Molly, programs in an inter-
mediate language for representing straight-line cryptographic
programs. A proc can be readily translated—with the help of a
suitable cryptographic library—into a conventional imperative
program. A proc is a sequence of statements.

Statements: A statement is an Event, a Bind, or a Check.
• An Event is an (Act Loc). For example the event
(Rcv v1 v2) expresses the action that a value is read
from the channel stored in v1 and stored in v2.

• A Bind is of the form

Bind (t, v) e

expressing the fact that storing the value named by
expression e into the location v; the symbolic term t
serves as a type for the location v.

• The Expressions e in a Bind statement are built from
locations by a set of operators mirroring the runtime
operators: Pair (pairing), Frst, Scnd (projections), Encr
(encryption), Decr (decryption), Hash (hashing), Quot
(string constant), PubOf (public part of a private key),
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Genr (a generated value) , Param (an input parameter),
anf Read (a value read).

• A Check is an assertion: if it succeeds, computation
simply continues, and if it fails, computation halts. The
check statements are
– (CSrt v s) : v1 has the sort s
– (CSame v1 v2) : the given locations have the same

value
– (CHash v1 v2) : v2 is the hash of v1
– (CKypr v1 v2) : the two locs make a private/public

runtime key pair3

– (CQot v s) : v stores the string s

Sometimes—for instance when defining proc transcripts—
we will want to focus on the Events of a proc, filtering out
the the bindings and checks.

Definition 4 (Trace of a Proc): Let pr be a proc. The
subsequence of Event statements of pr is called the trace of
the proc. ///

VII. COMPILER ALGORITHM

Now we can give more detail about the compilation process
introduced in Section V.

Given input role rl, we loop through the actions of the role:
• if the current action is an Prm or a reception Rcv of a

term t we add an Event statement to pr recording the
input or reception; then add a statement binding t to a
new location; then saturate pr

• if the current action is an Ret or a Snd of a term t
we add an Event statement to pr recording the output
or transmission; then saturate pr

A. Invariants

The state of the compilation at any point is a record with
the following data

• the role being compiled
• the current proc pr
• a list done of the role actions treated so far
• a list todo of the role actions yet to be treated
To express our invariants we first note that the Bind state-

ments of any proc naturally build a relation β from terms to
locations:

(β t v) if for some e, (Bind (t, l) e) is in pr. (1)

Using β we define the following invariants maintained by
the compilation process.

1. The concatenation of done with todo is the original role
2. pr is saturated.
3. The relation β systematically relates the list of terms

done and the trace of pr. More precisely we have

mapR βAct done pr

3When terms are interpreted by runtime values, the public part of a key
pair can be feasibly computed from the private part, though not vice-versa,
and so it is feasible to check whether a pair of values makes a key pair.

Here βAct is lifting of β to the Act data type and mapR is the
natural generalization of the map function on lists when the
function argument is generalized to be a relation, here βAct.

These invariants lead immediately to
Lemma 1: Let pr be the result of a successful compilation.
• The role rl and the trace of pr are related as

mapR βAct rl trace pr

• pr is saturated
These are the two properties that yield a proof of our core
correctness result, the Reflecting Transcripts theorem. We
next give a more formal, though still necessarily incomplete,
treatment of saturation.

B. Saturation

A proc pr is saturated if it is closed and justified. We
explain these in turn. The following convention will make the
definitions easier to read.

Notation 1: In the inference rules below we write
Bind (t, v) e to mean
Bind (t, v) e is one of the statements in pr.

1) Closure: Closure is the process of (i) adding binding
statements to a proc in order to reflect the information known
about parameters and messages received or generated and (ii)
adding checks to reflect certain constraints, such as equality
between values, or well-sortedness of a value.

The closure rules are defined in the context of a set unv of
symbolic terms; in practice unv will be the set of subterms
occurring in the role being compiled. The rules fall into three
categories:

• Elimination Rules, that decompose bindings for complex
terms into bindings for their constituents (necessary for
analyzing receptions)

• Introduction Rules, that generate bindings for complex
terms out of bindings for their constituents (necessary to
generate transmission or to build needed decryption keys,
as in Example 1) and

• Check statements, functioning as runtime assertions.
Space considerations preclude treating every case of the

definition; a complete treatment is in the full paper. Here are
three sample closure rules, one from each category.

Pair Elimination Left and Right Rules
We apply these rules when e not a pair expression for

(Pr t1 t2)

Bind ((Pr t1 t2), v) e

Bind (t1, vnew) (Frst v)

Bind ((Pr t1 t2), v) e

Bind (t2, vnew) (Scnd v)

Pair Introduction Rule
We require that (Pr t1 t2) is in unv, and that pr has no

bindings for (Pr t1 t2) .

Bind (t1, v1) e1 Bind (t2, v2) e2

Bind ((Pr t1 t2), vnew) (Pair v1 v2)
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Check Same Rule 4

We apply this rule when t is an elementary term.

Bind (t, v1) e1 Bind (t, vf ) ef

(CSame v1 vf )

2) Being Justified: Intuitively, a proc pr is justified if, (i)
received encryptions always have decryption keys available,
and (ii) whenever (Hs t) is bound in pr then t is also bound.
Formally:

Definition 5 (Justified Proc): A proc pr is justified if it
satisfies

Bind ((En p k), v) e ∧ non-Encryption e →
∃v1,∃e1,Bind (k−1, v1) e1

Bind ((Hs t1), v) e ∧ non-Hash e →
∃v1,∃e1,Bind (t1, v1) e1

///
To see the motivation for the hash justification clause, observe
that there is no analog of projection or decryption for hashes.
So the only way to check that a reception of shape (Hs t) is
valid is to have a binding for t available so that we can hash
that value and compare it to the received value.

We can now give the crucial definition of saturation.
Definition 6 (Saturated Proc): A proc pr is saturated with

respect to a set of terms unv if it is closed with respect to unv
and is justified. ///

The process of saturation always terminates.
Theorem 7: Let pr be a proc and unv a set of terms. There

are no infinite sequences of saturation rules starting with pr
using unv.

Proof: The three introduction rules apply at most once for each
t ∈ unv, and the new bindings they add cannot be premises
of any other rule. Thus there are at most | unv | applications
of introduction rules in any saturation process.

So it suffices to argue that there can be only finitely
many application of Checks and the elimination rules Pair
Elimination Left and Right and Decryption.

Let us say that a binding Bind (t, v) e is a redex if it is the
active premise of a rule whose conclusion is not in pr.

Note that each binding can be a redex for at most one rule,
with two exceptions: (Bind ((Pr t1 t2), v) e) can be a redex
for both Pair Elimination Left and Pair Elimination Right, and
a binding for an asymmetric key can be a premise for Check
Key Pair as well as for (one of) Check Sort or Check Same.

Let us assign a weight to each binding (Bind (t, v) e) in pr,
by (i) counting the number of rules for which it is an active
redex and (ii) multiplying this number by the size of t.

For example, if (Bind ((Pr t1 t2), v) e) is in pr and neither
the conclusion of Pair Elimination Left nor Pair Elimination
Right is in pr then this binding gets weight 2|(Pr t1 t2)|.

4We have simplified this rule for presentation here, The actual rule deployed
in Molly has an optimization that avoids a surfeit of CSame statements in
the generated code

Then we say that the weight of pr is the sum of the weights
of the bindings in pr. We claim that each elimination or Check
rule application decreases this weight.

First: by inspection we see that when a rule fires, the active
premise is no longer a premise for that rule.

Second: when a Check rule fires, the weight of pr decreases
by the size of term being bound. No bindings are added by a
Check rule.

Finally, when Pair Elimination Left or Pair Elimination
Right or Decryption fires, the size of the term being bound is
subtracted from the weight of pr, and replaced by the weight
of some term in a new binding. But this new term is smaller
than the term in the redex.

Thus the weight of the proc decreases at each step, and
saturation must terminate.

3) Closure vs Being Justified: Compilation succeeds pre-
cisely when saturation succeeds at each role event, which is
to say, the saturation process delivers a proc that is closed and
justified. Now, closure always succeeds: the process runs until
no more rules can be applied, and our termination analysis
says this will eventually halt (Thm. 7) .

On the other hand, being justified is not a property that we
can ensure of the procs the compiler builds. It is ultimately
a property of the role we are compiling: it will fail if the
parameters and expected receptions of the role do not provide
the material needed to construct needed keys or bodies of
hashes.

So the only way compilation can fail is that we halt with a
closed proc that isn’t justified. We expand on this observation
in Section X.

VIII. AXIOMATIZING THE RUNTIME

Molly does not read or generate runtime expressions, but
the semantics of roles and procs is built on runtime values.
Here we record our assumptions—presented as an equational
theory—about the runtime as an axiomatic theory R.

A. The Runtime Operators
We postulate a runtime operators corresponding to each

operator in target language of procs (see Section VI-E) . For
constructing values we have

pair encr hash quot pubof gen

where pubof computes the public part given the private part
of a key pair (defined below), and gen is a mechanism for
generating values of a given sort. We view pubof as a partial
function over runtime values, defined only for private keys.

There are operators for destructing pairs and encryptions
and an operator to return the sort of a value:

frst scnd decr rtsort

We view frst, scnd, and decr as partial functions, modeling
the fact that they can fail when not supplied with suitable
inputs.

We have not included any operators for processing param-
eters to a role, reading values from a channel, or returning
values to a caller since we don’t analyze these processes.
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B. The Axioms

a) Relating Pairing and Projection: The operations frst
and scnd are the usual projections characterizing pairs.

pair r1 r2 = r ↔ frst r � r1 ∧ scnd r � r2 (2)

b) Axioms about pubof: The pubof partial function
makes a bijection from sort ikey to the sort akey and is
undefined elsewhere.

pubof r1 = r2 → rtsort(r1) = ikey∧ rtsort(r2) = akey
(3)

sort(r1) = ikey → ∃! r2, pubof r1 = r2 (4)
sort(r2) = akey → ∃! r1, pubof r1 = r2 (5)

We will say that the ordered pair (r1, r2) makes a key pair if
pubof(r1) = r2.

c) Relating Encryption and Decryption:

encr rp rke re ↔ decr re rtinv (rke) = rp (6)

For convenience we have phrased this axiom in terms of the
definable function rtinv, which is not a runtime primitive for
us, but defined as follows: rtinv(r1) = (r2) if

• (r1, r2) makes a key pair or
• (r2, r1) makes a key pair or
• r1 = r2 and is not of sort ikey or akey

d) Axiom about gen: The gen operation delivers values
of the appropriate sorts.

rtsort(gen n srt) = srt (7)

In the Coq code for Molly we use a typeclass to capture
the theory R.

C. How the Axioms are Used

We present the above as a natural basic theory of the
runtime. But in fact our main correctness theorem for the
compiler, Theorem 8, requires a remarkably small number of
assumptions about the runtime: indeed we do not require all
of the above axioms in proving Theorem 8.

• We only use the → direction of axiom 2 concerning
pairing.

• We don’t use the axioms about pubof (axioms 3, 4, and
5.)

• Notably, we assume no properties, such as randomness,
freshness, uniqueness, etc, about gen other that the fact
that it generates values of the proper sort (axiom 7).

These claims are readily checked when proofs are mechani-
cally verified: we simply edit the Coq code to reflect these
weakenings and confirm that the proof of the theorem is
undisturbed.

IX. PROVING TRANSCRIPTS ARE REFLECTED

Here we describe the proof of our main correctness theorem,
capturing the fact that if role rl is compiled to proc pr, then
the executions of pr are reflected by the executions of rl.

Theorem 8 (Reflecting Transcripts): Let rl be a role, and
suppose that rl successfully compiles to proc pr. Then any pr-
compatible store-based transcript is an rl-compatible valuation-
based transcript.

Proof:[Sketch] Recall the definition relating terms to locations
based on the Bind statements in proc:

(β t v)
def
= for some e, (Bind (t, l) e) ∈ pr

Now suppose tr is a pr-compatible store-based transcript.
By definition tr is determined by a store function, from Loc
to Rtval. By precomposing this function with the relation β,
we get a relation τ from Term to Rtval, as suggested by this
picture.

rl pr

tr

β

τ σ

Formally:

τ t r
def
= ∃ v e,Bind (t, v) e ∈ pr∧ σ v � r

This yields (modulo lifting these functions and relations to
the Act data type) a raw transcript. It is easy to see that this
transcript is in fact our original tr, and is induced by τ , and so
tr is an rl-compatible transcript, induced by τ . To establish that
tr is valuation-based it suffices to show that τ is a valuation.
This is where the Saturation conditions on pr come into play.

We consider some representative conditions of being a
valuation.

• To see that τ is functional on elementary terms: suppose
we are given t, r1, r2 with t elementary, (τ t r1), and
(τ t r2). We want to show r1 = r2.
By definition of (τ t r1) and (τ t r2) we have
v1, e1, v2, e2 such that

Bind (t, v1) e1 and σ(v1) = r1 and
Bind (t, v2) e2 and σ(v2) = r2

By the Check Same Condition (see Section VII-B) on
pr we have (CSame v1 v2) in pr. Since σ respects the
sameness checks of pr we have σ(v1) = σ(v2) as desired.

• To see that τ respects pairing: Given t1, t2, r with
(τ (Pr t1 t2) r); we seek r1, r2 such that (τ t1 r1),
(τ t2 r2), and pair r1r2 = r. By definition of τ we
have v and e such that

Bind ((Pr t1 t2), v) e is in pr and σ(v) = r.

There are two cases: either e is a pair expression for
(Pr t1 t2) or not. We consider the (slightly more
complicated) latter case. We use the Pair Elimination

8



inference rules (Section VII-B). Closure under these rules
yields locations v1 and v2 such that

Bind (t1, v1) (Frst v) and Bind (t2, v2) (Scnd v)

Set r1 = σv1 and r2 = σv2. Since σ is a pr-store, it
respects Frst and Scnd,

frst(σv) � (σv1) and scnd(σv) � (σv2)

that is,

frst r � r1 and scnd r � r2.

Now we simply apply one of our axioms about the
runtime, namely

pair r1 r2 = r ↔ frst r = r1 ∧ scnd r = r2.

In the remaining case, where e is a pair expression for
(Pr t1 t2), we will use the Pair Introduction rule of
Section VII-B; however, space precludes giving more
detail.

• To see that τ respects encryption:
Given p, ke, re, with (τ (En p ke) re); we want to es-
tablish the disjunctive encryption property, item 1 of
Definition 1.
By definition of τ we have v and e such that

Bind ((En p ke), v) e ∈ pr (8)
σ(v) = re. (9)

There are two cases: either e is an encryption expression
for (En p ke) or not.
1. Suppose e is an encryption expression for (En p ke),

so that

Bind ((En p ke), ve) (Encr vp vk) ∈ pr (10)

for some vp and vk. We establish the encr condition,
i.e., that there exists rp, rke such that
– (τ p rp)
– (τ ke rke)
– encr rp rk re

Since e is an encryption expression for (En p ke), there
are ep and ek such that

Bind (tp, vp) ep ∈ pr (11)
Bind (tk, vk) ek ∈ pr (12)

Set rp to be (σvp) and rke to be (σvk). Then

(τ p rp) (13)
(τ ke rke). (14)

Since σ is a pr-store, it respects respects Encr and so
we have, by (10),

encr (σvp) (σvk) (σv)

holds at runtime which is to say

encr rp rk re. (15)

The encr condition follows from (13), (14), and (15)
2. Suppose e is not an encryption expression for

(En p ke). We establish the decr condition, i.e., that
there exist rp and rkd such that
– (τ p rp)
– (τ ke

−1 rkd)
– decr re rkd � (σvp)

By the Encryption Justification property applied to (8)
there are vkd and ekd such that

Bind ((ke)
−1

, vkd) ekd ∈ pr (16)

Set rkd to be (σvkd), thus

τ(ke)
−1

rkd (17)

By the Decryption Condition applied to (8) and (9) we
have

Bind (p, vp) (Decr v vkd) ∈ pr (18)

for some vp. Set rp to be (σvp), thus

τ p rp (19)

Since σ respects Decr, we have, by (18),

decr (σv)(σvkd) � (σvp)

which is to say

decr re rkd � rp (20)

The decryption condition follows from (17), (19), and
(20)

///
Remark
It is instructive to compare the treatments of pairing and

encryption in the above proof. We start with, respectively,

Bind ((Pr t1 t2), v) e or Bind ((En p k), v) e

In each instance the argument branched on whether or not the
expression e was a Pair expression, or Encryption expression,
respectively. In the affirmative case for each instance we
argued directly that τ satisfied the definition of valuation, and
the arguments were precisely parallel.

In the neutral cases we argued indirectly:
• using the axiom

pair r1 r2 = r ↔ frst r = r1 ∧ scnd r = r2

for pairing, and
• using the “decr condition” for encryption.

The pairing case was simpler. Why, for the encryption case, did
we not just invoke the equivalence similar to that for pairing,
namely

encr rp rk re ↔ decr re rk
−1 = rp

instead of going to the trouble of defining the disjunctive
condition in item 1 of Definition 1? Here’s the explanation.
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In the encryption proof, the runtime value r is the value of
the store σ on the location for the key k. The equivalence about
encryption refers to both rk and rk

−1. The latter would arise
naturally as the value of σ on k−1. But there is no reason
to suppose that our proc pr has locations corresponding to
each of k and k−1. The situation for pairing is simpler in that
the pairing equivalence involves no “alien” value analogous
to rk

−1. Logically speaking, deconstructing an encryption
involves a minor premise, not so for deconstructing a pair.

In essence our proof in the encryption case is branching on
whether the proc has a binding for k or a binding for k−1; in
the latter case we are using the fact that in a saturated proc
an encryption binding with a neutral expression is justified.

This (necessary!) inconvenience that pr probably does not
have locations corresponding to each of k and its inverse is
precisely why the definition of valuation has its disjunctive
character.

X. WHEN DOES COMPILATION FAIL?

In this section we explore the intimate connection between
the procs constructed by Molly and Dolev-Yao derivability of
symbolic terms. Roughly speaking, the connection is this: if
pr is a proc generated from a role rl then the terms t such that
there is a binding Bind (t, v) e in pr are the terms that are
Dolev-Yao derivable from the input parameters and messages
received in rl.

To state this precisely, first let us say that a term t is obtained
in role rl if either (Prm t) is in rl or (Rcv ch t) is in rl for
some ch.

Next let us add two natural tweaks to the traditional Dolev-
Yao system: (i) we may derive, without hypotheses, (Qt s)
for any string s, and (ii) we may derive the public part of a
key pair from the corresponding private part.

Then we have the following relationship between derivation
and compilation.

Theorem 9: Suppose pr is a proc generated from a role rl.
• If Bind (t, v) e is a statement in pr such that the

expression e has no occurrence of the Genr operator, then
t is derivable in the enhanced Dolev-Yao system from the
set of terms obtained by rl.

• When pr is closed, then if term t occurs as a subterm
of rl and is derivable in the enhanced Dolev-Yao system
from the set of terms obtained by rl, then there exist v
and e such that Bind (t, v) e is a statement in pr.

Proof: The proof follows naturally from the observation
that each of the closure rules corresponds to a Dolev-Yao
inference rule when the information about locations and proc-
expressions is erased.

A. Executability

Several authors (e.g., [12], [8], [13]) have defined notions
of executability of a protocol, statically-checkable properties
that give confidence that a protocol can be run to completion.
In our situation we can connect these ideas to the success or
failure of role compilation (a static property of roles).

As observed in Section VII-B, the only way compilation
can fail is that we halt with a closed proc that isn’t justified.
This means (cf. Definition 5) that either

• there is a binding Bind ((En p k), v) e in pr, with e not
an Encr-expression, such that for no v1, e1 do we have
Bind (k−1, v1) e1 in pr, or

• there is a binding Bind ((Hs t1), v) e in pr, with e not
a Hash-expression, such that for no v1, e1 do we have
Bind (t1, v1) e1 in pr.

But in the first case, the term (En p k) is derivable from
the terms obtained in rl but the term k−1 is not derivable from
the terms obtained in rl. Similarly, in the second case the term
(Hs t1) is derivable from the terms obtained in rl, but the term
t1 is not derivable from the terms obtained in rl.

So failure of compilation in Molly is reflected by the
existence of terms from the role that are required in order
for the proc to be able to construct statements it needs but
cannot be Dolev-Yao derived.

XI. RELATED WORK

Molly’s goals are complementary to those of computer-
aided cryptography, a growing area of research that applies
formal verification to the design, analysis, and implementation
of cryptography. Barbosa et al [7] includes a systematic
overview of that literature as of 2021; the Last Yard framework
is a recent “unified foundational Coq framework for the end-
to-end verification of high-speed cryptography” [20].

As discussed in the introduction, our goals are amplified
by those of computer-aided cryptography. We assume the
existence of libraries for cryptographic primitives, and we
generate code for the processes of message transmission and
reception that will be linked with such libraries. Our focus is
on bridging the gap between protocol narrations in a semi-
formal style and protocol descriptions that are more formal.

Correspondingly, our notion of correctness is independent of
the correctness of the design or the implementation of crypto-
graphic algorithms (and certainly independent of higher-level
questions such as whether a protocol validates certain security
goals). Rather we focus on the specific claim that the code
Molly generates implements the processes of transmitting and
receiving bitstrings at correctly, according to the specification
embodied in the given symbolic role. This is the content of
Theorem 8.

The fact that the runtime assumptions we require for this
theorem are so modest VIII-B suggest that our results should
integrate seamlessly with computer-aided cryptography frame-
works.

The development of verified compilers is by now a well-
established area, for conventional languages (CompCert [23]
is an exemplar here) as well as domain-specific languages (e.g.,
[33]).

Many authors have worked to bridge the gap between
protocol narrations in a semi-formal style and protocol de-
scriptions that are more formal. We organize the discussion
below according a crude partition. One category is work that
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translates protocol narrations to another—formally defined—
language, like process calculus or multiset rewriting. Typically
the payoff is that automated verification tools can then be used
to reason about the protocol. Another category is tools that
compile protocol descriptions into a conventional program-
ming language. Often the input to these tools is already in
a formal notation such as spi-calculus, and sometimes the
translation is instrumented with tools that support claims about
the security guarantees of the target program.

Work in the first category includes translation of protocol
narration to CSP [25], to generic intermediate languages
[16] [27], [3], to Multiset Rewriting [21] [22], to symbolic
representations of principals’ knowledge [26] [8] (annotated
with unifiability conditions in [13]), and to Pi-calculus and
variants [11] [12] [10].

In most of the works above the authors offer their work as
supporting an “operational semantics” for roles, and here we
can identify an interesting difference between our work and
theirs. In the works above we can identify two broad opera-
tional semantics approaches. In one case the job is to define
the activities that an agent takes to implement the protocol:
constructing and deconstructing messages, certain checks, etc.
In the other case one defines the possible executions of the
protocol: sometimes a notion of trace is defined, tracking the
evolution of symbolic representation of principal’s knowledge,
(Cremers [15] is a detailed development of this perspective)
or alternatively the semantics is implicit in the semantics of
the target formalism (pi-calculus, multiset rewriting, etc).

Our work cuts across these two functions. The sequence of
activities that an agent takes to implement a given protocol
role is precisely the proc built by our compilation. And, our
transcripts capture the executions of the protocol not in terms
of symbolic terms, but rather in terms of runtime values.

We will see that our procs support an obvious notion of
transcript. Then as noted above, since roles and procs have a
common target domain for their semantics it makes sense to
compare the meaning of a role and the meaning of a proc. Prior
work offers no formal proof of correctness of the translation
process; our main contribution is a machine-checked proof of
a theorem doing just that.

An intriguing aspect of the work in Caleiro, Vigano, and
Basin [12] is that they employ a notion of incremental sym-
bolic runs as a basis for a denotational semantics. Each state
of a run reflects the information known by the principals;
the run itself models how information grows. The rules for
evolution of these runs look very much like our saturation
process in Section VII-B for building the bindings of a proc!
The difference is that for them the process of recording the
growth of principals’ knowledge is a semantics of a role, while
for us this process is the essence of compiling, not execution.
As explained earlier, our denotational semantics is grounded
in the world of bitstrings functioning as runtime values.

Arquint et al [4], [5] are mainly interested in verification,
and present a tool that is not really a protocol compiler: it starts
with a Tamarin model and generates a set of I/O specifications
in separation logic. But their main correctness result has an

interesting relationship to ours. An I/O specification is a set
of permissions needed to execute an I/O operation [31]. Then
(quoting [4]) “traces can intuitively be seen as the sequences
of I/O permissions consumed by possible executions of the
programs that satisfy it.” They prove that if abstract Tamarin
model M is translated to a set S of I/O specifications, then
any concrete implementation satisfying S refines M in terms
of trace inclusion. This is closely analogous to our Reflecting
Transcripts theorem 8, with logical properties standing in for
runtime values.

We now turn to the category of projects that are primarily
focused on generating implementations from protocol specifi-
cations. Although the work in [3] is not principally focused in
this way, that paper reports a translation from its intermediate
language SPS into JavaScript.

Tobler and Hutchinson [37] built the Spi2Java tool, which
builds a Java code implementation of a protocol specified
in a variation of the Spi calculus. There is no proof that
the semantics of the input specification is preserved by the
translation.

Backes, Busenius, and Hritcu [6] developed Expi2Java,
which translates models written in the Spi calculus [2] into
Java. They formalized their translation algorithm in Coq and
proved that the generated programs are well-typed if the
original models are well-typed.

Modesti [28], [29] developed the “AnBx” compiler, which
generates Java code from protocols written in an Alice &
Bob-style notation. The tool generates certain consistency
checks and annotates the translation with applied pi-calculus
expressions to permit a ProVerif [9] verification that security
goals are met by the Java code.

The JavaSPI tool of Sisto, Copet, Avalle and Bronte [36]
starts with code in a fragment of the language that corresponds
to applied pi-calculus [1]. The tool can symbolically execute
this code in the Java debugger, formally verify it using
ProVerif, eventually refine to an Java implementation of the
protocol. They prove that a simulation relation relates the
Java refined implementation to the symbolic model verified
by ProVerif.

Spi2Java, Expi2Java and JavaSPI require the user to provide
input in a more demanding formalism than the familiar Alice
& Bob-style. A benefit of all of the systems in this category
compared with Molly is the fact that they produce code for the
ubiquitous Java platform. On the other hand, for none of these
systems is there a proof of correctness of the compilations
themselves.

Ramsdell’s Roletran compiler [35] has functionality and
overall goals quite close to that of Molly. The input is a
CPSA specification of a role, and the output is a program
in an intermediate language designed to be readily translated
to a conventional language: our input and output languages
are inessential variations on Roletran’s. The main correctness
claim of Roletran is that “the procedure produced by Roletran
is faithful to [the] strand space semantics [of the input role].”
Roletran does not have a machine-checked proof of its global
correctness claim, but the distribution does the following

11



interesting thing (similar to the approach in Pnueli et al [32]).
Coq scripts are provided that can check, for a given role rl,
that the procedure generated by the tool is correct (according
to the symbolic-trace semantics).

Differences between Molly and Roletran include the facts
that Roletran’s strand space semantics is in terms of symbolic
traces for a role, as opposed to our role semantics based
on runtime values, and that we provide a machine-checked
proof of a uniform correctness theorem. Roletran has some
restrictions on the messages that can appear in roles compared
with Molly.

Roletran is also the inspiration for a fully usable framework
called Zappa that augments a role compiler with many ingredi-
ents needed for a runtime system, including runtime message
formats based on ASN.1 encodings. The Zappa compiler
generates procedures in the Rust programming language for
a substantial extension of the source syntax considered here
and in Roletran. Correctness proofs have not been considered
for the extensions. Cryptographic libraries available in Rust
may be linked in.

XII. CONCLUSION AND FUTURE WORK

Molly currently handles just a minimum set of primitives
to exercise the relevant algorithm ideas and proof techniques.
We expect that it will be straightforward to expand to other
operations such as digital signatures and richer notions of
tupling. A more significant extension of the current work will
connect it with protocol analysis. Specifically we will integrate
Molly into the CPSA ecosystem, so that a protocol designer,
having established some symbolic-level security goals for her
protocol using a CPSA analysis, can generate implementations
of the protocol roles satisfying those goals.

One would also like to know that a symbolic security
goal established by CPSA holds true of the joint runtime
actions of a set of participants if they all use Molly-generated
code linked against strong cryptographic libraries, including
CCA2 encryption and existentially unforgeable signatures. A
few additional properties are needed, such as disjointness
assumptions for different operators and elementary sorts. With
those in place, we conjecture that any observed execution
is, with overwhelming probability, an instance of a symbolic
execution that CPSA has considered.
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APPENDIX

NSL IN MOLLY

We now have enough information about the compiler to
present the example from Section II fully realized, discussing
some of the techniques of the compiler in detail. Here is the
responder role of the Needham-Schroeder-Lowe protocol was
presented in strand notation:

{|Na, A|}KB

ch��

{|Na, Nb, B|}KA
{|Nb|}KB

ch��
• +3 • +3

ch
OO

•
To render this role in the input language of Molly we first
express the data in an ASCII syntax.

• we write the channel ch as (Ch 0)
• we write participant A’s name as (Nm 0)
• we write participant B’s name as (Nm 1)
• we write A’s public key KA as (Ak (Av 0))
• we write B’s public key KB as (Ak (Av 1))
• we write B’s private key KB

−1 as (Ik (Av 1))
• we write A’s nonce NA as (Tx 0)
• we write B’s nonce NB as (Tx 1)
We write the actions of the role, the two receptions and

the transmission, as Rcv and Snd events, respectively. The
parameters are listed explicitly in the five Prm expressions,
and the two receptions with the intervening transmissions are
given next. At the end, the Molly role presentation is explicit
about what the role returns (in contrast to the strand notation)
by listing two return events.

Thus the NSL responder strand is captured as the following
Molly role.

NSL responder as Molly input
Prm (Ch 0)
Prm (Nm 0)
Prm (Nm 1)
Prm (Ak (Av 0))
Prm (Ak (Av 1))
Prm (Ik (Av 1))

Rcv (Ch 0)
(En (Pr (Tx 0) (Nm 0))

(Ak (Av 1)))

Snd (Ch 0)
(En (Pr (Tx 0) (Pr (Tx 1) (Nm 1)))

(Ak (Av 0)))

Rcv (Ch 0)
(En (Tx 1)

(Ak (Av 1)))

Ret (Tx 0)
Ret (Tx 1)

When Molly compiles this role we have the following proc
as output. The reader will probably want to start with the guide
that follows.
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NSL responder as Molly output
1

2 Bind (Tx 1, L 1) (Genr 1 Text);
3 Csrt (L 1) Text;
4 Evnt (Prm (L 2));
5 Bind (Ch 0, L 2) (Param 1);
6 Csrt (L 2) Chan;
7 Evnt (Prm (L 3));
8 Bind (Nm 0, L 3) (Param 2);
9 Csrt (L 3) Name;

10 Evnt (Prm (L 4));
11 Bind (Nm 1, L 4) (Param 3);
12 Csrt (L 4) Name;
13 Bind (Pr (Tx 1) (Nm 1), L 5)
14 (Pair (L 1) (L 4));
15 Evnt (Prm (L 6));
16 Bind (Ak (Av 0), L 6) (Param 4);
17 Csrt (L 6) Akey;
18 Evnt (Prm (L 7));
19 Bind (Ak (Av 1), L 7) (Param 5);
20 Csrt (L 7) Akey;
21 Bind (En (Tx 1) (Ak (Av 1)), L 8)
22 (Encr (L 1) (L 7));
23 Evnt (Prm (L 9));
24 Bind (Ik (Av 1), L 9) (Param 6);
25 Csrt (L 9) Ikey;
26 Ckypr (L 9) (L 7);
27 Evnt (Rcv (L 2) (L 10));
28 Bind
29 (En (Pr (Tx 0) (Nm 0))
30 (Ak (Av 1)), L 10)
31 (Read 1);
32 Bind (Pr (Tx 0) (Nm 0), L 11)
33 (Decr (L 10) (L 9));
34 Bind (Tx 0, L 12) (Frst (L 11));
35 Bind (Nm 0, L 13) (Scnd (L 11));
36 Bind (Pr (Tx 0) (Pr (Tx 1) (Nm 1)),
37 L 14)
38 (Pair (L 12) (L 5));
39 Bind
40 (En (Pr (Tx 0) (Pr (Tx 1) (Nm 1)))
41 (Ak (Av 0)), L 15)
42 (Encr (L 14) (L 6));
43 Csrt (L 12) Text;
44 Csame (L 3) (L 13);
45 Evnt (Snd (L 2) (L 15));
46 Evnt (Rcv (L 2) (L 16));
47 Bind (En (Tx 1) (Ak (Av 1)), L 16)
48 (Read 2);
49 Bind (Tx 1, L 17) (Decr (L 16) (L 9));
50 Csame (L 1) (L 17);
51 Evnt (Ret (L 12));
52 Evnt (Ret (L 1))

Notes on the proc

• Lines 2 and 3 generate B’s nonce (Tx 1) and do a check-
sort. For simplicity of design, Molly emits code for the
generation of such local values in an initialization phase,
even though (as in this case) these values may not be
required till later in the execution..

• Line 4 starts processing of 1st parameter: line 5 stores
the parameters value in a fresh location, (L 2), and line 6
is code for the runtime check that this parameter really
is a channel.

• The five other parameters are processed similarly, starting
at lines 7, 10, 15, 18, and 23 respectively.

• Lines 27 and 46 respectively initiate the two receptions;
line 45 is the transmission event.

• Most of the complexity of compilation lies in the pro-
cessing of receptions; let us unpack the proc code for the
reception of {|A,Na|}KB

at lines 27 through 35.
– Line 27 itself records the fact that a reception happens

on the channel at location (L 2) and the value received
is stored at the fresh location (L 10).

– The Bind at line 28 records the fact that the sym-
bolic term corresponding to the value in (L 10) is
{|A,Na|}KB

, which is (En (Pr (Tx 0) (Nm 0)) (Ak
(Av 1)), L 10) (Read 1) in Molly syntax, and that this
value is expressed by the first Read expression.

– Line 32 is the start of the process of validating this
reception.
∗ we (attempt to) bind the body (Pr (Tx 0) (Nm 0))

of the encryption to a location (L 11) by decrypting
(L 10) by the key stored in (L 9). We expect that
(L 9) holds the decryption key for this encryption
because in previous lines (18 and 23 we bound (L
7) to the public key of B, and (L 9) to its inverse.
Note that this Decr operation can fail at runtime,
for example if the runtime value in (L 10) is not an
encryption, or if the value in (L 9) is not a suitable
decryption key. We also have a runtime check, in
line 26, that the values (L 7) and (L 9) do indeed
form a key pair.

∗ In a similar way, lines 34 and 35 ensure that the
body of our encryption is really a pair, we perform-
ing the two projection operations Frst and Scnd and
binding the resulting values to new locations and
recording the expected symbolic-term associations.

• Lines such as 13, and lines 38 through 44 have a
different character than those arising out of “immediate”
requirements. They are part of the saturation process, but
they generate bindings for terms that could be required
later.
For instance, the transmission in line 45 has the value
to be sent already constructed and bound to a location.
Why do we do this advance construction of values, rather
than building them only as we need them? This just-in-
case strategy (the opposite of a just-in-time strategy) is
actually required, as we observed in the Saturation is not
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Syntax-Directed paragraph of Section V, (see Example 1).
The key point is that the process of fully destructing
input values to test that they are suitable can involving
constructing values from data already received.
Molly schedules these constructions eagerly, so that by
the time a message is to be transmitted, it is already bound
to a location; this is why transmission events themselves
such as line 45 are so simple.
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