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Abstract—Assured Remote Execution for a device is the ability
of suitably authorized parties to construct secure channels to
known processes (i.e. processes executing known code) running
on that device. Assured remote execution requires a hardware
basis including cryptographic primitives.

We give a simple hardware-level mechanism called Crypto-
graphically Assured Information Flow (CAIF) to enable Assured
Remote Execution. CAIF is akin to existing Trusted Execution
Environments, but securely implements an ideal functionality for
logging and confidential escrow.

CAIF achieves assured remote execution, and symbolic protocol
analysis demonstrates our security goals are achieved even
against a strong adversary that may modify our programs and
execute unauthorized programs on the device.

Assured remote execution allows trustworthy remote attesta-
tion, and a core part of secure remote reprogramming. 1

I. INTRODUCTION

Suppose you have control of a device d early in its life, after
which d may be physically inaccessible, e.g. on a satellite,
or rarely accessible, e.g. one of many devices on ships, or
embedded in airplanes, or scattered throughout the electric
power grid. Long-term, can you deliver messages exclusively
to specific, known processes executing on d? Can you, when
receiving a message, be sure it was prepared by a specific,
known process on d? Can the processes run code written and
delivered long after d was initialized?

This is the Assured Remote Execution challenge.
Assured remote execution requires hardware support, as

well as cryptography to protect messages in transit and to
ensure authenticity of the endpoint d and active process
within d. Thus, solving the assured remote execution challenge
requires both device-local mechanisms on d and distributed
mechanisms to coordinate d with its owner or peers. This paper
offers a device-local mechanism in §§ III–VI, and shows that
it suffices for protocols to coordinate with d starting in § VII.

Good solutions should:
1. Use a simple hardware basis relying only on simple,

efficient, well-understood crypto primitives;
2. Achieve the assured remote execution even against a

strong adversary capable of running its own software
on the device, or modifying existing software, including
hypervisor software and software running during boot;
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3. Yield a verification strategy for using the mechanism,
including the assured remote execution protocols.

We define here a hardware basis adapted from existing
Trusted Execution Environments. It uses cryptography to sat-
isfy an ideal functionality controlling information flow among
processes local to d, where we identify processes by the hash
of their executable code and constants. This allows a process
on d receiving certain data values to identify the processes that
generated them, and it allows a process on d wanting to pass
a data value confidentially to a particular recipient process to
do so without any other process observing the value. We call
it CAIF, for Cryptographically Assured Information Flow.

Our hardware basis uses only hashing, key derivation func-
tions, message authentication codes (MACs), and authenticated
symmetric encryption. These form a small collection of deeply
understood primitives, meeting criterion 1.

We have designed our mechanisms under the assumption
that some processes on our devices may run carefully vetted,
trustworthy code, whereas others may run questionable or even
malicious code. We do not assume protected storage to hold
executables within a CAIF device, so our conclusions hold
even if an adversary modifies our programs in the filesystem
or installs their own. Hence, higher level software can use
CAIF to help prevent malicious execution without circular
dependencies. So our adversary model meets criterion 2.

An ideal functionality [20], [11] characterizes CAIF, and
our cryptographic mechanism simulates it to within negligible
probability (Cor. 1). Lemmas saying the ideal functionality
enforces our intended information flow constraints are thus
also near approximations to the cryptographic mechanism.

Having justified the CAIF mechanism, we show how to build
assured remote execution on top of it. We formalize the be-
haviors as protocols in CPSA, a symbolic-style Cryptographic
Protocol Shapes Analyzer that supports both message passing
and local device state [42]. CPSA helped us eliminate errors,
discover core ideas, and assure that the resulting mechanisms
satisfy our security claims. Our CPSA models incorporate
a strong adversary that can run any code, subject to the
assumption that code that yields the same hash value under
a strong hash function will also yield the same computational
behavior. The ideal functionality proof and symbolic protocol
analysis together meet criterion 3.

The core idea of CAIF. CAIF provides two central functions.



One enables a service (certain processes) to log itself as
the source or authorizer of a data item. Other parties can
subsequently check whether an expected service has logged
a data item. The other function enables a service to escrow a
piece of data for a service as recipient. Only that recipient can
then retrieve it. In a check or retrieve operation, the recipient of
a logged or escrowed value names the value’s expected source.
The operation fails if that source did not log or escrow it, so
success guarantees the value’s provenance.

The cryptography-free ideal functionality of § III imple-
ments these functions via an unbounded secure memory, prov-
ing desirable behavioral properties (Lemmas 1–3). This secure
memory holds the logged associations of service and data, and
the escrowed associations of data, source, and recipient.

CAIF devices (§ V) use MACs for logging and authenticated
encryption for data escrow. They require only one unshared
“intrinsic secret” IS , used as an input to key derivation for
those cryptoprimitives. CAIF devices name services by the
hash of their executable code, ensuring that two services with
the same name will have the same computational behavior.

Assured remote execution requires evidence a service svc
on d sent messages m. Our scheme uses a signing keypair
(sk, vk) with a certificate chain for the verification key vk. The
certificate chain provides public evidence that sk is escrowed
for svc, and that the provenance of sk leads back to a previous
service svc0 that escrows it only for svc. At the root of the
chain, a certifying authority authenticated d using a shared key
that was established early in d’s life.

If m is signed with sk, then svc bears responsibility
(see IX-A). For confidential channels to svc, the signed
messages m can be used for key encapsulation [46].

Contributions. We make three main contributions.
1. We define CAIF and its ideal functionality for data logging

and escrow (§§ III, V).
2. We prove that CAIF, if using strong cryptography, is

computationally indistinguishable from an instance of the
ideal functionality (§ VI).

3. We develop a sequence of protocols on CAIF to achieve
assured remote execution. Symbolic protocol analysis
shows they achieve this goal despite a strong adversary
that can execute code of its own choice on our devices.
§ VII gives our strategy, and §§ VIII–IX provide details.

CAIF’s guarantees are independent of delicate systems-level
considerations, such as how software obtains control at boot.
§ II identifies key challenges and a use case, which § IV shows
how to meet. §§ X–XI discuss related work and conclude.

II. CURRENT CHALLENGES

CAIF is motivated by several ingredients in the current
situation for cryptographic devices and secure systems design.

A. Background challenges

The quantum-resistant transition. Motivated by the quan-
tum cryptanalytic threat, new quantum-resistant primitives are

now in draft standard [2], [38], [39], [40]. However, CAIF’s
guarantees are independent of asymmetric cryptography such
as digital signatures. Long-lived CAIF devices meet their
guarantees even if these primitives are broken and revised, or if
their key sizes must be adjusted. New asymmetric algorithms
and root-of-trust keys—typically, signature verification keys—
can be installed securely on geographically dispersed CAIF
devices, yielding a long-term security architecture depending
only on stable, efficient symmetric cryptographic primitives.

Trusted Execution Environments. If asymmetric algorithms
may need to evolve, existing Trusted Execution Environments
(TEEs) [14], [25], [26] are not the right tool. Although they
use only symmetric cryptography at the hardware level, they
rely on public key encryption to protect data passing from
one enclave to another. This was acceptable when quantum
cryptanalysis seemed distant, but is no longer.

CAIF contrasts in two central ways with prior TEEs. First,
prior TEEs construct a device-local secret unique to each
enclave, and deliver this to the enclave for actions including
local attestations. CAIF constructs such a key but instead itself
generates MAC tags to log data. The TEE behavior does not
satisfy a logging ideal functionality, and does not allow us to
construct it: Some enclaves may choose to disclose their key,
producing counterexamples to Lemma 1 (cf. § X-A). Second,
CAIF’s escrow also constructs keys for ordered pairs of ser-
vices, and uses those for its confidential escrows. This provides
a symmetric method for service-to-service information flow,
which existing TEEs entirely lack.

B. A CAIF application: Satellite reprogramming

CAIF pays off for widely dispersed, long-lived devices with
clear security goals and programs that may need to evolve.

For instance, the owner of a network of communications
satellites needs to manage them securely from the ground
through decades of use. The satellites must also create secure
connections among themselves. Customers and other network
providers also need secure connections with them.

These secure connections may need updated asymmetric
cryptography within the lifetime of the satellites as quantum
resistant algorithms or key sizes may evolve. New crypto code
with new root-of-trust keys must then be installed while the
satellites and their crypto hardware are aloft. Data integrity
is critical: An adversary whose bogus root key is accepted
can command the satellite. Thus, services can use a root
key only if it must have been installed by the authorized
local service, which in turn authenticated its origin from the
satellite’s management on the ground. Local provenance leads
back to a root key installer, from which an authenticated
protocol must lead back to the management.

Updating signature algorithm and root-of-trust key. Sup-
pose a CAIF-equipped device d, after some initial terrestrial
preparation, called “anchoring,” is loaded into a satellite to
provide cryptographic functionality and lofted into orbit; the
operator of the satellite wants to exert control over the satellite
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via d. This operator is called the device authority DA. We
assume for now that DA shares a long-term secret kar which
can be used only by a particular service with code hash arh;
§ VIII-C sets up kar via the terrestrial preparation.

Years later, the signature algorithms d uses may need
updating; maybe the old ones are already compromised. DA
can send new code svAlg for signature verification to d via
ordinary communications, but must also send evidence the
new code is trustworthy and received unaltered, as well as
a new root-of-trust signature verification key vk for checking
signatures with svAlg. In § IV we show how to use CAIF to
do so securely.

III. AN IDEAL FUNCTIONALITY FOR CAIF

We characterize CAIF with an ideal functionality IF, mean-
ing a well-defined set of behaviors that might be difficult to
achieve directly. IF would require an unbounded amount of
memory under its exclusive control, about which no observer
gains any information except through IF’s official interface.
Lemmas 1–3 prove desirable behavioral properties of the IF.

In Section V we will introduce CAIF devices using cryp-
tography, and in Section VI we prove that these CAIF devices
offer a near approximation to the IF’s behavioral properties.

A. Main elements

We consider a system as a collection of active processes
that act by executing instructions. Some active processes
are distinguished as services. A service has an unchanging
executable code segment, and an unshared heap for private
computations. Because the code segment is unchanging, its
hash serves as a persistent principal or identity for the service,
and also determines its computational behavior.

The instruction set includes two pairs of special instructions
besides normal computational steps. The first pair allows a
service to log itself in an attestation log atlog as source or
authority for data, so other active processes can later make
decisions based on its provenance:
iattest has one parameter, which points to a region of data

with some contents v. The logging functionality selects
a tag, a bitstring τ , and stores a record into atlog
associating the currently active service identity Ps with
v and the tag τ . Logging returns τ in response.

icheck has three parameters, namely a service principal iden-
tity Ps, a pointer to a region of data with some contents
v, and a tag τ . The logging functionality returns true if
the named service Ps previously logged v into atlog via
iattest, with tag τ . Otherwise, it returns false.

Any active process can use icheck to see if Ps has logged
itself as an authority for v. However, only a service can execute
iattest, since only services have a persistent identity Ps. Some
function Flog of Ps and v determines τ . To implement iattest,
one would use a MAC as Flog , so τ is the MAC tag. The tag τ
and v may be passed from source to recipient through shared
resources such as a file-system.

The second pair of instructions ensures provenance of
the source, and also provides data escrow through a table

protstore, meaning that the source service Ps is making the
data v available just to one recipient service Pr:
iprotect has two parameters, the intended recipient service

principal identity Pr and a pointer to a region of data
with some contents v. When executed by a currently
active service identity Ps, the escrow functionality selects
a randomized handle η. It stores a record in the lookup
table protstore, indexed by (η, Ps, Pr), pointing to the
value v. We write this (η, Ps, Pr) 7→ v.
The logging functionality returns η in response.

iretrieve has two parameters, the expected source service
principal identity Ps and a handle η. When executed
by a currently active service identity Pr, the escrow
functionality looks up the index (η, Ps, Pr) in the table
protstore. If any entry (η, Ps, Pr) 7→ v is present in
protstore, that v is returned to Pr. Otherwise, it fails.

Lemmas 2–3 below depend on iprotect’s choice of handles η.
We assume it samples η from a distribution Dj,Ps,Pr

for data
of length j escrowed by principal Ps for recipient Pr where:

(i) the randomized choice of η is independent of which v is
presented, for all v of a given length j;

(ii) For different lengths j ̸= j′, the supports supp(Dj,Ps,Pr
)

and supp(Dj′,P ′
s,P

′
r
) are disjoint; and

(iii) The IF does not re-use any handle η; it checks the table
entries and re-samples in case of collision.

B. Behavioral lemmas about IF

A strength of the ideal functionality definition is that several
properties of the behaviors of an IF follow easily from it.
A command c is an instruction together with a choice of its
command arguments, v for iattest; (Ps, v, τ) for icheck; etc.

Definition 1: An event is a triple (command,principal,result)
of: a command; the executing service principal that causes it
(or ⊥ if the active process is not a service); and the result of
executing the instruction.

A behavior of a state machine M equipped with principal
identities is a finite sequence ⟨(ci, Pi, ri)⟩i<ℓ of events in
which each command ci can cause the result ri when executed
by principal Pi in some state that can arise from the preceding
events ⟨(cj , Pj , rj)⟩j<i, starting from an initial state.

An IF behavior is a behavior of IF starting from the initial
state with empty lookup tables. ///

Properties of IF: Logging. We can summarize the important
properties of the attestation instructions in a lemma. It says that
a check after a matching attest does yield true, and that if a
check yields true, then an earlier attest occurred.

Lemma 1: Let α = ⟨(ci, Pi, ri)⟩i be an IF behavior.
1. If, for i < j, ci = iattest(v) and cj = icheck(Pi, v, ri),

then rj = true .
2. If cj = icheck(p, v, τ) and rj = true , then for some

i < j, ci = iattest(v), Pi = p, and ri = τ . ///
This lemma is independent of how Flog chooses tags. Lemma 1
makes no claim about sequential order; check confirms only
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presence not sequence relative to other events. Values v con-
taining hash chains can add sequential information as usual.

Properties of IF: Protection. The analog of Lemma 1 holds
for iprotect, using the re-sampling assumption (iii):

Lemma 2: Let α = ⟨(ci, Pi, ri)⟩i be an IF behavior.
1. If, for i < j, ci = iprotect(Pj , v) and cj =

iretrieve(Pi, ri), then rj = v.
2. If cj = iretrieve(p, η) and rj = v, then for some i < j,

ci = iprotect(Pj , v), Pi = p, and ri = η. ///

Ideal secrecy for IF. IF leaks no information about the values
associated with handles that are never retrieved.

A schematic behavior αν in the variable ν results from
a behavior α by replacing one occurrence of a bitstring in
a command or result of α with the variable ν. If b is any
bitstring, αν [b/ν] is the result of replacing the occurrence of
ν by b. The latter may not be a behavior at all, since this b
may be incompatible with other events in α.

By (i), a strong, Shannon-style perfect secrecy claim holds
for the ideal functionality:
Lemma 3: Let αν = ⟨(ci, Pi, ri)⟩i be a schematic behavior,
where ν occurs in an iprotect instruction ci = iprotect(Pr, ν)
executed by Ps. Let ℓ be a length of plaintexts for which the
result ri is possible. By assumption (ii), there is a unique such
ℓ. Let D be any distribution with supp(D) ⊆ {0, 1}ℓ.

Suppose there is no subsequent cj = iretrieve(Pi, ri) with
this input ri and Pj = Pr. For every b ∈ supp(D):

1. αν [b/ν] is a behavior;
2. the probability Pr[v0 ← D; v0 = b | αν [v0/ν] ] that the

given b was sampled from D conditional on observing
αν [v0/ν] equals Pr[v0 ← D; v0 = b]. ///

Lemmas 1–2 are authentication properties; Lemma 3 is
a secrecy property. Lemma 3 is strong; since CAIF must
approximate it using concrete cryptography, it achieves only a
computational approximation to it. The IF is parameterized by
a function Flog and a family of distributions Dℓ,Ps,Pr ; each
instance of IF is of the form IF[Flog , {Dℓ,Ps,Pr}]. The lemmas
hold for all values of these parameters satisfying (i)–(iii).

IV. USING THE CAIF FUNCTIONALITY

A. Satellite reprogramming via CAIF

We turn back to our satellite reprogramming challenge
for CAIF from § II-B. We use the assumed shared secret
kar as a MAC key to authenticate messages from DA. MAC
suffices because we need no confidentiality here; integrity,
authentication, and authorization are the goals.

On d, an authorized recipient has service identity or code
hash arh, and a signature verifier with code svAlg has code
hash svh = hash(svAlg).
Authorized recipient with hash arh: it receives an incoming

containing a code hash svh and a signature verification
key vk and MAC-checks it using kar. On success, it
iattests a verifier record containing vk and svh and also

iattests a client record containing svh. The verifier record
authorizes svh to use key vk. The client record authorizes
clients to use svh to verify signatures.
The service arh is trusted to make these authorization
claims. As arh is independent of the signing algorithm,
it may be installed at device initialization and left perma-
nently unchanged.

Signature verifier with hash svh = hash(svAlg): it obtains
a verifier record containing a verification key vk and
its own hash svh. If the record ichecks as logged by
arh, then svh awaits requests (m,σ) from clients. If the
signature verification succeeds for (m,σ) with key vk,
then the service iattests a confirmation record containing
yes, m, and σ. On failure, it iattests an error record.
The authority DA compiles the constant arh into the code
svAlg. Altering the constant alters the hash svh, so a log
record with provenance from svh ensures the right origin
arh was checked.

Clients, when receiving a purported signed message (m,σ),
obtain a client record containing a hash value svh, using
icheck to ensure it was logged by arh. They then request
svh to verify the signature. When a confirmation record
containing yes, m, and σ is received, and it ichecks
successfully for svh, the signature is valid. The clients’
code also embeds arh as a constant.

If DA authorizes only verifier code acting as described, then
messages will be accepted only if validly signed. Symbolic
protocol analysis confirms this, assuming kar is protected from
compromise at DA.

The symbolic protocol analysis makes some fine points
explicit. For instance, DA authorizes more than one root
verification key vk for the code svh, the client does not
learn which key verified a particular (m,σ). Adding vk to
the confirmation record achieves this, if desired.

A remote authority can use this method to enable a CAIF
device to use new signature verification algorithms coded,
delivered, and authorized long after CAIF device became
physically inaccessible. An initial anchoring event made the
shared secret kar available only to arh (see § VIII-C).

Deauthorizing an old, no longer secure signature algorithm,
by contrast, requires an irreversible change, lest an adversary
roll d back to it. A monotonic counter, judiciously used, would
likely suffice, but that remains as future work.

Assured remote execution? This protocol does not offer
assured remote execution: It does not deliver evidence to a
remote observer that any svc is active on d. It offers local
client services information provenance for vk and svh, namely
evidence they were obtained by arh, and are thus authorized if
DA safeguarded kar. the scheme authenticates messages from
DA to d assuming DA protects its signing key.

Assured remote execution offers a converse, i.e. authenti-
cating messages from a service svc on d to external peers. DA
can use shared keys like kar for this authentication. Signature
delegation (§ IX) subsequently extends this svc-to-DA assured
remote execution to allow any peer to authenticate any service
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on d using (possibly new) digital signature algorithms. The
underlying message authentication allows d to get signing keys
for these services certified.

Access to long-term secrets such as kar at the DA should be
rare and stringently restricted. We use them only to authorize
new asymmetric algorithms on the device or to certify keys.

CAIF for assured confidentiality. Signature verification
keys require integrity; by duality signing keys require con-
fidentiality. A signing key that will authenticate a service
on d must rely on the signing key remaining confidential;
adversary-installed code must not hijack the key. Thus, local
flow should carry a DA-certified private signing key only to
the code authorized to use it. DA must know that the private
signing key cannot reach any further code as recipient. We use
the CAIF escrow operation iprotect to achieve this; see § IX.

Another application: critical infrastructure. Devices con-
trolling electric grids, water systems, etc. have succumbed to
widespread infiltration, unsurprisingly as their software is very
hardware-specific. As they are long-lived and geographically
dispersed, hands-on reprogramming is impractical. Remote
methods are needed to guarantee new code controls them. Pre-
liminary work with Field Programmable Gate Arrays suggests
CAIF’s hardware burden is modest, making it feasible for these
small, cost-constrained devices.

B. Techniques for effective CAIF use

A few core ideas underlie effective CAIF use.

Local chains of provenance. Multistep chains of provenance
can use CAIF logging or escrow. Suppose svc0 logs m0 that
says, “I computed v0 from v1, which was logged by svc1.”
Local services can icheck the m0 log entry, ensuring svc0
logged it. If the svc0 code does not log m0 unless it ichecks
v1 and computes v0, then svc1 logged v1. If v1 is a message
m1 of similar form, we can follow the chain backward.

The inference requires knowing what svc0’s code may do.
CAIF does not help proving this, but given evidence of it, CAIF
yields runtime conclusions about v0 and v1’s provenance.

Confidential intermediate values delivered exclusively to
svc1 via escrow may also be chained together (§ VIII-B). The
provenance information assures local services that the flow
occurred, with some confidential value v1 escrowed with a
handle η1.

How to use CAIF’s local guarantees remotely. Anchoring
(§ VIII) and signature delegation (§ IX) yield authenticated
messages from known services svc on d. If svc reports locally
validated provenance chains on d, the peer learns the source
of svc’s data, such as the pedigrees of secret keys.

But: Hashes are unpredictable. When one service escrows
confidential data for a peer service, how does the source
choose the hash of its target service? And how does a service
decide which hash stands for an authorized source service from

which it should accept data? Hashes are fragile and do not
reflect semantics. There are a number of approaches:

1. The hash hp of the intended peer service is embedded
in the active service’s executable code. Alterations to hp

in the code change its code hash ha to some other h′
a,

rendering data such as keys escrowed for ha unavailable.
If the peer is compiled first, the constant hp can appear
in ha’s executable. Alternatively, several services may be
constructed jointly with each others’ hashes [12].

2. The hash hp may be found within a logged or escrowed
record r the service reads, where CAIF logged h0 as
the origin of r. If h0 is known to be trustworthy for a
given purpose, e.g. by method (1), then trust for related
purposes may be delegated to hp by r.

3. The hash hp may be received in a message authenticated
as coming from an authority such as the device authority
DA, who may delegate trust for a particular purpose to
the service with hash hp.
The incoming message may be authenticated using a key
k found in an escrowed record with source hash h0; k’s
trustworthiness then comes via method (2). Alternatively,
an exchange occurring only in a protected environment
can also authenticate the incoming message.

4. The hash may be supplied as a parameter in an argument
vector or in an unauthenticated incoming message. A hash
hp of bad code may be supplied. This does no harm if
hp is included in messages or attested records generated
by the service, and the subsequent recipients can decide
whether to trust hp.

In methods (1) and (3), the authority has had an opportunity
to appraise whether the code with hash hp satisfies some
behavioral property. With method (4), the recipient adapts its
responses to what it knows about that code.

We used method (1) in § IV-A. Method (2) appears in the
client code of § IV-A and makes frequent appearances subse-
quently. We use method (3) repeatedly in §§ VIII–IX, receiving
hashes h in authenticated messages where the authentication
depends on escrowed keys. Our anchoring protocol (§ VIII)
uses method (3) where the authentication depends on a pro-
tected environment, which provides the fundamental trust basis
for our assured remote execution protocol.

Many combinations of the four methods are useful.
In our analyses below, we express behavioral properties as

protocol roles sending and receiving messages, and loading
and storing records into device state records. These roles define
what we are trusting the programs to do, namely to act on data
values of the relevant forms only in the patterns codified in
the roles. Their behavior may vary in other respects without
undermining our conclusions. Creating trustworthy software
is hard, but a precise description of what the software will be
trusted to do (and avoid doing) helps.

Some limits. The benefits of CAIF apply only to devices
satisfying the specification in § V. Hence, manufacturers must
prevent back doors; customers need reliable supply chains
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from the manufacturer. The customer must also anchor it
properly (as in § VIII), and protect the anchoring shared secret.

For different organizations’ CAIF devices to cooperate, each
needs to know the peer organization’s devices are CAIF-
compliant and were properly anchored. Different network
providers with CAIF-equipped satellites can interoperate se-
curely based on business agreements; interoperation among
allies is also reasonable. In a permissioned blockchain, the
controlling authority can make contractual agreements with
the parties. Open access blockchains, by contrast, have no way
to check which devices are in fact CAIF devices.

Information flow. The CAIF mechanism allows services to
determine from which service some data has come, and to
which service it may be delivered. In this sense, it controls
information flow. However, it has different goals from infor-
mation flow in the sense of the large literature descending from
Goguen and Meseguer [19]. In particular, rather than enforcing
a system policy, our mechanism allows services to enforce
their own application-specific policies; it is not a mandatory
mechanism but a discretionary mechanism. Moreover, unlike
classical noninterference, these policies are not “transitive;”
service s2 may accept data from s1 and deliver it to s3,
whereas s1 and s3 may refuse direct flow [44]. Thus, CAIF
enables discretionary, non-transitive information flow control.

Terminology. We write our hardware-based symmetric mech-
anisms as kdfh(x), mach(k, v), and ench(v, k) for the hard-
ware key derivation function, MAC, and authenticated encryp-
tion. The corresponding hardware decryption is dech(v, k).

We write [[ v ]]k for a digital signature on message v with
signing key k. We will assume that v is recoverable from [[ v ]]k.
The latter could be a pair (v, dsig(hash(v), k)) where dsig is
a digital signature algorithm.

A lookup table (e.g. a hash table) is a set T of index-to-result
mappings. Each mapping takes the form index 7→ result . A
table T satisfies the “partial function” constraint: if i 7→ r ∈ T
and i 7→ r′ ∈ T , then r = r′. T ’s domain is dom(T ) =
{i : ∃r . i 7→ r ∈ T}, and ran(T ) = {r : ∃i . i 7→ r ∈ T}.

When D is a distribution, we write supp(D) for its support,
i.e. supp(D) = {x : 0 < Pr [y ← D; y = x]}.

V. CAIF DEVICES

We use cryptography to implement IF, eliminating the
protected state in atlog and protstore. This cryptographically
achieved IF is CAIF. It uses a single fixed, unshared secret.

CAIF is built around two main ingredients: first, the idea of
a CAIF service, a computational activity with a known service
hash that serves as its identity (§ V-A); and, second, two pairs
of instructions or basic operations to ensure provenance and
control access of data passed among services (§ V-B). Aux-
iliary operations are also needed to manage services (§ V-C).
§ V-D summarizes what being a CAIF device requires.

A. CAIF control over services

A CAIF device designates some active processes as services.
A service has an address space such that:

1. Executable addresses are located only within a non-
writable code segment;

2. A non-shared heap segment is readable and writable by
this service, but not by any other active process;

3. Other address space segments may be shared with other
active processes.

These segments are disjoint, so that code is readable and ex-
ecutable but not writable, while heap is readable and writable
but not executable. A program can address them reliably, so
that secrets (e.g.) are written into unshared heap rather than
shared memory. Moreover:

4. The CAIF device controls when a service is active, and
maintains the hash of the contents of its code segment as
its service identity or principal.

The code segment being immutable, the hash does not change,
and CAIF regards it as a non-forgeable identity. To refer to the
principal, we often speak simply of its service hash.

B. CAIF instructions

CAIF offers two pairs of instructions for service-to-service
information flow. They correspond to iattest and icheck for
asserting and checking provenance, and iprotect and iretrieve
for escrowing data values and controlling their propagation.
The primitive operations use symmetric cryptography. Their
keys are derived from one or more service hashes and a device-
local unshared secret called the Intrinsic Secret.

5. An Intrinsic Secret within each CAIF device d is shared
with no other device or party, and is used exclusively to
derive cryptographic keys for the CAIF instructions.

We write IS for this intrinsic secret. IS is the only secret that
the CAIF hardware has to maintain. Hardware design can help
prevent IS being accessible except for key derivation. It may
be implemented as a set of fused wires as in SGX or as a
Physically Unclonable Function as in Sanctum [27].

The hardware furnishes four cryptographic primitives,
namely a key derivation function kdfh, a Message Authen-
tication Code mach, and an authenticated symmetric encryp-
tion ench with the decryption dech. Thus, when c was not
generated by an invocation of ench(p, k), then dech(c, k) is
negligibly likely to return a non-failure result.

A conceptual view of the cryptographic hardware compo-
nents is in Fig. 1. Triple arrows are buses; their source and
destination are guaranteed by physical connections.

Instructions may fail or succeed. Failing may be imple-
mented by a transfer of control or terminating the process, or
simply by setting a condition code to be checked to determine
whether to branch in subsequent instructions.

Provenance via MACs. One pair of primitive instructions
uses MACs for attesting locally and checking an attestation;
they identify a service that has generated or endorsed a data
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Fig. 1. CAIF Hardware Cryptography Components

value v, typically the data in a region of unshared heap defined
by a pointer and a length.
attestloc(v): Computes a MAC on given data v using a

key derived from IS and the service hash sh of the current
service. If no service is currently executing it fails.
The MAC key k is the result of key derivation via kdfh:

k = kdfh("at", IS , sh).

The instruction computes the MAC m = mach(k, v) of v
with k and makes m available. The MAC tag m and v
may subsequently be copied anywhere.

ckattest(shs, v,m): Checks—given a service hash shs of
the purported source, data v, and a purported MAC m—
whether m is correct. It returns true or false depending
whether the purported MAC m equals a recomputed MAC.
Thus, letting:

k = kdfh("at", IS , shs)

the result is true iff m = mach(k, v).
A service may thus log itself as the origin or approver of v;
any recipient of v and m, if executing on the same device
with the same intrinsic secret IS , can subsequently ascertain
its provenance. More specific “intent” may be encoded into
the content of v, which may then be copied to a shared re-
source, e.g. a filesystem. Thus, attestloc and ckattest
provide a device-local mechanism for asserting and confirming
provenance.

Protection and provenance via encryption. The remaining
primitive operations protect a value for a named recipient by
authenticated encryption, and retrieve a value from a named
source by decryption. The plaintext should always be located
within unshared heap. The ciphertext can pass freely through
shared resources, but only the stipulated recipient recovers its
content, and only if it was from the expected source.
protfor(shr, v): Computes—given an intended recipient’s

service hash shr and a data value v—an authenticated
symmetric encryption of v using a key k derived from
IS , the service hash sh of the currently executing service,
and shr. If no service is currently executing it fails.

The encryption key k is computed via kdfh as:

k = kdfh("pf", IS , sh, shr).

The third component is the service hash sh of the cur-
rently running service, and shr is its intended recipient.
The instruction computes the encrypted value:

e = ench(v, k)

which is stored back into a suitable region of memory.
The resulting e may subsequently be copied anywhere.

retrvfm(shs, e): Decrypts e—given an expected source’s
service hash shs and a purported encryption e—using key
k derived from IS , the source’s hash shs, and the code
hash sh of the current service. Fails if the (authenticated)
decryption fails, i.e. if the associated tag is wrong, or if
no service sh is executing.
The decryption key k is computed via kdfh as:

k = kdfh("pf", IS , shs, sh).

The service hash sh of the currently executing service
is now the last component, and the source shs is the
previous one. If v = dech(e, k), the plaintext v is stored
back into unshared heap.

Local provenance with access control results from
protfor and retrvfm. Only the service specified in the
protfor learns anything from the result, and only on the
same device. If sh or IS differs, the k in retrvfm will differ,
causing the authenticated decryption to fail. If sh specifies the
wrong source shs, k will again differ and failure ensue.

C. Auxiliary operations

We also need some auxiliary operations on services:
create-service: Creates a service with the code con-

tained in a buffer of memory, plus some other resources
including a newly allocated unshared heap. The service
hash is ascertained to be used by the CAIF mechanism.
The resulting service does not execute immediately, but
is placed on a list of runnable services.

start-service: Given a runnable service, start it execut-
ing with access to the values of any additional parameters.

yield: Stop executing the current service, retaining its state
for future start-services.

exit-service: Zero the unshared heap of the service and
eliminate it from the list of runnable services.

Any binary executable may become a service, with or without
CAIF instructions; that binary executable is then indelibly
associated with it through the service hash. Thus, its identity
is correctly reflected however it uses the four core CAIF in-
structions. Varying implementations can use different versions
of the auxiliary instructions.

D. CAIF devices

By a CAIF device we mean a hardware device that enables
the CAIF instructions in § V-B to be performed by services of
the kind given in § V-A; the auxiliary operations in § V-C may
be carried out using a combination of software and hardware.
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Definition 2: A CAIF state is an intrinsic secret IS . No CAIF
command modifies the CAIF state.

CAIF behaviors ⟨(cj , pj , rj)⟩j<i are behaviors containing
CAIF commands cj , active principals—i.e. code hashes—pj
and command results rj .

Cryptographic choices. CAIF devices should be equipped
with strong cryptographic primitives. In particular, implemen-
tors should endeavor to ensure:
Key derivation: The key derivation function kdfh is indistin-

guishable from a random function. We measure it by
the pseudorandomness advantage Advprf(A, k, q) of any
adversary algorithm A aiming to separate kdfh from a
random function Rk using up to q queries to kdfh and a
polynomial number of operations relative to the security
parameter k. See [17].

MAC: The attestloc and ckattest primitives use a
Message Authentication Code mach based on a hash
function with the collision resistance property. The
code hashing algorithm is also collision resistant. We
measure this by its existential unforgeability advantage
Adveu-mac(A, k, q) for A aiming to generate a correct MAC
or code hash for a bitstring that was not queried.

Encryption: The protfor and retrvfm primitives use an
ench secure against chosen ciphertext attacks [34]. We
measure it by two values. The chosen ciphertext indis-
tinguishability advantage AdvindCCA2(A, k, q) measures
A’s ability to distinguish encryptions of two different
plaintexts, and the ciphertext unforgeability advantage
Adveu-enc(A, k, q) measures A’s ability to generate a value
that will decrypt under an unknown key.

Code hashing for services should be second preimage resistant.
CAIF devices thus form families, parameterized by a security

parameter k. § VI argues that as k increases and the advantages
just described decrease, CAIF devices become indistinguish-
able from instances of IF.

Hardware implementation. A hardware implementation of
CAIF is under development, with FPGAs for convenience.
ASICs will subsequently be needed, e.g. to protect IS properly.

The CAIF “special instructions” are implemented not as
instructions, but as stores to a memory-mapped peripheral
region of the FPGA followed by loads from it. FIFOs ensure
that the service’s view of the process is atomic, i.e. that none
of the ciphertext for protfor can be observed until all of
the plaintext has been committed.

An open-source RISC-V soft core provides the instruction
set for the processor functionality. Keystone [28] suggests a
provisional way to enforce the memory protection in § V-A,
items 1–3. A more complete CAIF implementation will provide
memory protection assurance directly in hardware, using a
simple layout of services in physical memory.

VI. CAIF SECURELY IMPLEMENTS IF

We next prove that a CAIF device is close in behavior
to the ideal functionality IF, where close is quantified by

the cryptographic properties of the primitives kdfh, mach,
(ench, dech) used in the construction, as defined in § V-D.

Oracles. A computational process AF may make queries to
a state-based process F , receiving responses from it. We refer
to the latter as an oracle.

In any state any query determines a distribution D on (next-
state,result) pairs. A behavior or history is a sequence of
query-result pairs, such that there is a sequence of states where
the first state is an initial state and, for each successive state s,
that state and the result are in the D-support for the previous
state and the current query. More formally:
Definition 3: An oracle is a tuple O = ⟨Σ, Q, I,R, δ⟩ such
that I ⊆ Σ, ⊥ ∈ R, and δ : Σ×Q→ D(Σ×R).
Σ is the set of states, I being the initial subset. Q is the

space of possible queries. The function δ is the probabilistic
transition relation. An alternating finite sequence

⟨(σ0,⊥), q0, (σ1, r1), q1, . . . , qi(σi+1, ri+1)⟩ (1)

is a trace of O iff σ0 ∈ I , and for all j < i,
1. qj ∈ Q, σj+1 ∈ Σ, and rj+1 ∈ R; and
2. (σj+1, rj+1) ∈ supp(δ(σj , qj)).

The probability of any trace of O is determined by the Markov
chain condition, i.e. the product of the (non-zero) probabilities
of the successive (σj+1, rj+1) in the distributions δ(σj , qj).

A behavior or history of O is a finite sequence of pairs
⟨ (qj , rj+1) ⟩j<i such that for some sequence ⟨σj⟩j≤i, the
sequence (1) is a trace of O. ///

We use behavior and history interchangeably.
AF(so,·) denotes running of A with oracle access to F with

initial state s0. We write AF(·) if the initial state is clear. F(·)
is function-like, returning results rj for queries (cj , Pj).

A partial run of AF(·) induces a history H of F(·). If it
completes with answer a, having induced the F(·)-history H,
then we write (a,H) ↞ AF(·). When we do not need H, we
write a← AF(·) as usual.

Where H = ⟨(qi, ri)⟩i is a history, query(H) refers to the
sequence ⟨qi⟩i. We write v ∈i S when S is a sequence and v
occurs in the ith position of S.

A. Defining advantages

A CAIF device is an oracle with unchanging state, the
intrinsic secret IS , with constant length |IS |. Its commands
are the four instructions of § V-B, syntactic objects consisting
of an instruction name together with values for the arguments.
The result ⊥ signals instruction failure.

The CAIF functionalities form a family {C}k of oracles
parameterized by the security parameter k, with cryptographic
primitives yielding advantages defined in § V-D.

An instance of the IF is also an oracle. Its state consists
of atlog and protstore. The transition relation δ is defined in
§ III-B using Flog and the family Dℓ,Ps,Pr

. We identify the
instruction attestloc with iattest, and so forth.

Our CAIF and IF oracles take queries (c, p), where c is
a syntactic command and p is a service principal (i.e. a
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service hash). As in § III, we write behaviors in the form
⟨ (cj , Pj , rj) ⟩j<i rather than ⟨ ((cj , Pj), rj+1) ⟩j<i.
Aq,t denotes the adversary A instrumented to halt immedi-

ately if it exceeds q oracle queries or t computational steps.
Adversaries are possibly stateful, and may operate in phases;
Aq,t causes all phases of A combined make at most q queries
and at most t computational steps before halting.

Definition 4 (CAIF properties): Let {C}k be a CAIF func-
tionality and k a security parameter for which Ck is defined.

1. The attestation unforgeability advantage of A is:

Adva-u(A,C, k, q, t)

= Pr[((p, v, τ);H) ↞ A
Ck(·)
q,t :

∃i . ∀j < i . (icheck(p, v, τ), p′, true) ∈i H ∧
(iattest(v), p, τ) /∈j H]

2. The protection unforgeability advantage of A is:

Advp-u(A,C, k, q, t)

= Pr[((p, v, η);H) ↞ A
Ck(·)
q,t :

∃i . ∀j < i . (iretrieve(p, η), p′, v) ∈i H ∧
(iprotect(v, p′), p, η) /∈j H]

3. Let I(·)(m,Ps, Pr) query (iprotect(Pr,m), Ps) with re-
sult η. The protection confidentiality advantage of A is
Advp-c(A,C, k, q, t) = |p0 − p1| where pb =

Pr[(m0,m1, Ps, Pr, α)← A
Ck(·)
q,t (⊥);

η ← ICk(mb, Ps, Pr);

(x;H) ↞ A
Ck(·)
q,t (α, η) :

x = 1 ∧ |m0| = |m1| ∧
(iretrieve(Ps, η), Pr) /∈ query(H)]

B. Two lemmas

Let k be a security parameter for which CAIF is defined.
Lemma 4 (Attestation unforgeability): There are reductions

Γ1,q and Γ2 with additive computational overhead, such that
for any A, Adva-u(A, CAIF, k, q, t) ≤

qAdveu-mac(Γ1,q(A), k, q) +

Advprf(Γ2(A), k, q + 1) ///

Proof: See [17] for proofs.
Lemma 5 (Protection unforgeability): There are reduc-

tions Γ3,q and Γ4 with additive computational overhead
t3(k, q) and t4(k, q) respectively, such that for any A,
Advp-u(A, CAIF, k, q, t) ≤

qAdveu-enc(Γ3,q(A), E , k, q, t+ t3(k, q)) +

Advprf(Γ4(A), kdfh, k, q + 1, t+ t4(k, q)) ///

C. Proving secure implementation

Given a CAIF device with its crypto primitives and
a particular intrinsic secret IS , let IF be the instance
IF[Flog , {Dℓ,Ps,Pr}] where:
Flog(v, P ) = mach(sk, v) where sk = kdfh("at", IS , P );

Dℓ,Ps,Pr is the distribution generated by ench(0
ℓ, sk)

where sk = kdfh("pf", IS , Ps, Pr).
Theorem 1: Let {Ck} be a CAIF functionality and let k
be a security parameter for which which C is defined. Let
Advimp(A,C, k, q, t) be defined to be

|Pr[ACk(·) = 1]− Pr[AIFk(·) = 1]|.

There are reductions Γ7,q , Γ8, Γ9,q , and Γ10,q with computa-
tional overhead times t7(k, q), t8(k, q), t9(k, q), and t10(k, q)
respectively, together with the reductions Γ1,q , Γ2, Γ3,q , and
Γ4 of Lemmas 4–5, s.t. for all q < W ,

Advimp(A, CAIF, k, q, t) ≤
q2AdvindCCA2(Γ7,q(A), k, q)+

Advprf(Γ10(A), k, q)

q2(Adveu-mac(Γ1,q(Γ9,q(A)), k, q))+

q(Advprf(Γ2(Γ9,q(A)), k, q + 1))

q2(Adveu-enc(Γ3,q(Γ10,q(A)), k, q))+

q(Advprf(Γ4(Γ10,q(A)), k, q + 1))

Proof sketch: The proof operates as a hybrid argument re-
garding four probabilities, namely the probabilities that AOi(·)

outputs 1 for various oracles Oi for 0 ≤ i ≤ 3. The oracles
are defined as follows:
O0 = IF.
O1 implements IF, except that for iprotect queries, we select

the candidate values c by encrypting the input value v
rather than 0|v|.

O2 implements O1 except that it uses kdfh with an intrinsic
secret IS instead of using the random function Rk.

O3 = Ck.
We construct a reduction for each gap, summarized in Fig. 2.
Lemmas 4–5 bound the rightmost term in Fig. 2. ///

Hence, if CAIF uses strong cryptography:

Corollary 1: If a CAIF device has pseudorandom kdfh, ex-
istentially unforgeable mach, collision-resistant code hashing,
and IND-CCA2 ench, then that CAIF device is computationally
indistinguishable from an instance of IF. ///

VII. ASSURED REMOTE EXECUTION STRATEGY

In §§ VII–IX we verify protocols for assured remote execu-
tion on CAIF against a code-selecting adversary. Each device
has a uniquely identifying name, its immutable identifier imid ;
imids, like other names, may be publicly known.

When we speak of protecting a value for a service or
retrieving a value from a service, we mean that the value is
the argument to protfor or the result of retrvfm, resp.

A. Achieving Assured Remote Execution

Our strategy uses a succession of steps, and does not depend
on any digital signature algorithm to remain secure throughout
a device’s lifetime. We start from an assumption. The de-
vice must be started running a known program once, at the
beginning of its lifetime. The manufacturer—already trusted
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Advind(A, CAIF, k, q)︷ ︸︸ ︷
Pr[AO0(·) = 1] Pr[AO1(·)︸ ︷︷ ︸

q2AdvindCCA2(Γ7,q(A))

= 1] Pr[AO2(·)︸ ︷︷ ︸
Advprf(Γ8(A))

= 1] Pr[AO3(·) = 1]︸ ︷︷ ︸
q[Adva-u(Γ9,q(A))+

Advp-u(Γ10,q(A))]

Fig. 2. Implementation theorem proof strategy: Lemmas 4 and 5 bound the last term

to produce correct hardware—initializes it with a compliant
service to run first. This anchor service must run only in a
secure environment. Devices undergo a state change—such as
fusing a wire, flipping a switch, or advancing a monotonic
counter—to prevent re-execution after successful anchoring.

The owner or authority controlling this device, its device
authority DA, anchors the device, sharing the secret ks with
it in step 1. The DA must store ks securely for later use.

Starting with our assumption:
0. We assume local execution of a single service, the anchor

service in a context suitable for secure initialization.
1. The DA and the anchor service establish a shared secret

ks. The anchor service protects ks for the exclusive use of
a recipient service svc1 via protfor in shared storage.
It then zeroes its unshared memory and exits (§ VIII).
A state change prevents rerunning the anchor service.

2. svc1 is a symmetric key distributor service. It will receive
authenticated requests from DA; each request specifies a
service hash sh , and svc1 derives a secret kdf(ks, sh) that
it protects for the exclusive use of the service with hash
sh in shared storage. It then zeroes its unshared memory
and exits (§ VIII-C).

For instance, the key kar of § IV-B is derived by the symmetric
key distributor service as kar = kdf(ks, arh).

To escape from using shared secrets to infer assured remote
execution, we establish a signing key delegation service. Pos-
sibly long after the time of initialization, possibly repeatedly,
§ IX installs new programs and authorizes them using a key
from the symmetric key distributor:

3. A set-up service with hash suh generates a device
signature key pair (dk, dvk). Using the shared secret
kdf(ks, suh) to authenticate, it proves to a certifying
authority CA operated by DA that it holds the signing
key dk. A certificate associates the verification key dvk
with a service hash dsh , the device’s imid , and some
supplemental values.
The set-up service protects dk for service dsh exclusively.
It then zeros its unshared memory, and exits.

4. The delegation service has hash dsh . When invoked
with a target service hash sh , it generates a new sign-
ing key pair (sk, vk). It emits a certificate-like binding
[[ . . . imid , sh, vk, . . . ]]dk signed with dk.
It protects sk for the service sh exclusively, in shared
memory. It then zeros its unshared memory, and exits.

If sh does not expose dk, then messages signed with sk must
come from sh , as required for assured remote execution.

Assured remote execution. Each of these steps builds
additional assured remote execution power. Step 0 simply
assumes local execution of the anchor service in secure initial
environment. Step 1 assures remote execution only for one
service svc1, with evidence useful only to DA, which holds
ks. Step 2 gives any service sh a secret, but evidence of sh’s
remote execution is useful only those sharing the secret.

Step 4 completes the progression. Any sh can receive a
signing key documenting its execution on d, and any principal
willing to trust the CA’s certificate can use the evidence. No
shared secrets are needed as sh executes.

Alternative for short-lived devices. If d will never outlive a
signing algorithm and keysize, a simpler protocol is enough.
The set-up service of step 3 becomes the anchor service. It
obtains a certificate on dvk. The signing key delegation service
of step 4 provides signing keys to services sh . No shared
secrets are needed; however, if algorithms or root keys are
superseded, assured remote execution cannot be reestablished.
Other benefits of local flow control remain.

B. Compliant roles and adversary roles

Over time, many active processes will execute and use the
CAIF instructions on a device. Many of the processes may
behave unpredictably, either because the adversary chose them,
or because they were simply poorly written. They may use the
CAIF instructions with any values they can obtain; CAIF just
ensures they do so under their own service hash. We call them
adversarial services or just wildcats.

However, some programs, having been carefully constructed
for specific behaviors such as the ones we have just described,
may have no other relevant behaviors. They do not use these
keys for any other messages, nor use the CAIF instructions in
any other relevant way. We call them compliant services.

A compliant service complies with one or more role specifi-
cations, and never performs relevant actions except as the role
dictates. The predicate compliant is true of service hashes of
programs, intuitively, that we have vetted and judge compliant.
If a service hash sh is compliant, the consequence is:

• every use of the CAIF instructions with active service hash
sh belongs to an instance of a specified compliant role,

i.e. the roles with behaviors defined in §§ VIII–IX. The
compliant property always arises as an assumption in analy-
sis; we will not present methods here for proving services are
compliant, presumably a task for program verification.
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Adversary activities or wildcats use the CAIF instructions
freely, but use service hashes not assumed compliant.

Wildcat roles. We specify the adversary’s local powers—
beyond the usual network powers to interrupt, redirect, and
synthesize messages, to extract and retain their contents, and
to execute cryptographic operations using any keys they may
possess—by three wildcat roles with names beginning wc-,
so-called because they may use the IF instructions in whatever
unexpected patterns would benefit the adversary:
wc-protect causes an iprotect instruction with current service

shs, recipient shr, and value v.
wc-retrieve causes an iretrieve instruction and transmits v for

adversary use.
wc-attest causes an iattest instruction, logging v with the

current service shs in the atlog.
A wildcat role for ckattest is unnecessary in this context,
because it is a conditional that produces no new data. The cases
are represented for protocol analysis via pattern matching.

Rules on the wildcat roles. The wildcat roles obey rules
saying that if sh is the active hash in a wildcat role, then
sh is not compliant. So CAIF instructions with compliant

service hashes occur only in rule-bound, non-wildcat roles.
This is a strong adversary model: the adversary may install

any programs and execute them as services, using protfor
etc. as desired. However, if a program has a service hash we
assume compliant, then it will have the same behavior we
specified in a compliant, non-wildcat role. The adversary can
also run our services, unless special provisions prevent some
from running, as e.g. repeated anchoring (step 1).

VIII. ANCHORING A CAIF DEVICE

When a new CAIF device reaches the buyer’s warehouse—
or alternatively, just before shipping—it is anchored.

Anchoring runs a known program on the fresh CAIF device
in a secure environment. This may require shielded cables to
the device, or wireless communications shielded in a Faraday
cage. Thus, we will call this the ceremony in the metal room.

The metal room provides authenticated and confidential
channels between DA and the device, thereby delivering a
shared secret ks. Subsequently the device and DA use ks and
derived keys for symmetric encryptions and MACs.

The anchor service. The steps of anchoring are:
1. DA turns on d and starts d running the symmetric anchor

service, with service hash anch .
2. DA observes the device identifier imid , and prepares a

secret seed r and a nonce n. DA transmits

imid , anch, dh, n, r,

dh being the hash of the destination service meant to
obtain the secret ks.

3. The service anch checks its device has id imid , and its
service hash is anch . It then computes

ks = kdfh(r, imid),

dev-get-anc da-send-anc dev-init-imid da-init-group-seed

•
��

•

��

imidoo •
r0oo•

��
•
��

•...roo •imid

oo•
��
•

prot(dh,(ks,imid,⟨anch,dh⟩)) //

Fig. 3. Metal room activity, symmetric anchoring

and replies with n to confirm completion.
4. It uses protfor to protect ks together with the identities
⟨dh, anch⟩ for service dh exclusively into shared storage;
it zeroes its unshared memory and exits.

Hence, ks is available on imid only to the service with hash
dh . To ease managing long-term secrets, r may itself be
derived by differentiating a group seed r0 for imid , setting
r = kdfh(r0, imid), so ks = kdfh(kdfh(r0, imid), imid).

The anchor service must run only with a secure metal room
channel, requiring an irreversible state change after which
anch will no longer run, e.g. a switch being flipped.

After the ceremony in the metal room, ks remains perma-
nently available to dh to secure later remote interactions.

A. Analyzing symmetric anchoring

We now analyze the ceremony in the metal room.
A role on the device represents the anchor service, together

with a role dev-init-imid to initialize a device’s immutable
ID imid to a fresh value. A pair of roles represent the DA’s
interaction with the device. One does set-up to manage the
shared secrets, creating a group seed r0, from which secrets
r are derived. A second sends the anchor secret r during the
ceremony in the metal room.

Our analyses all assume that the anchor service hash anch
is compliant, i.e. that the adversary cannot perform wildcat
actions under hash anch . We ascertain that ks and its deriva-
tives remain unavailable to the adversary.

What happens at the metal room layer if the device anchor
role runs to completion? We assume the metal room ensures
both authenticity and confidentiality. We find that the anchor
secret ks is obtained from the DA sending the secret r. The two
parties obtain the device’s imid from the same device events.
And the DA has properly derived the anchor secret from its
group seed r0 (Fig. 3).

In Fig. 3, vertical columns represent successive actions—
reading downwards along the double arrows—of an instance of
the role named at the top; single arrows represent propagation
of messages or of values in device-local state (protfor
records, secure seed storage at the DA). Message transmission
and reception are shown as black nodes • and blue nodes
•, resp. Local state reads and writes are gray nodes •. More
comments on the diagrams are at the end of § IX-D.
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In subsequent steps, as we add more roles to model sub-
sequent activities we reverify these properties, since protocol
interactions could undermine them.

B. Trust chains

We keep track of “chains of provenance” for trust, meaning
the sequence of services—starting from an anchor service—
that obtained previous keys and generated new keys to protect
for their successors. We store trust chains with the keys that
they validate in protfor records. We also deliver trust chains
in messages between parties, who can check them to trace
provenance back to the anchoring program.

Trust chains are lists of service hashes. If trch is a trust
chain, we write the effect of pushing a new hash h to it as
h :: trch , using a cons “::” operation.

Each of the services we specify, when retrieving a trust
chain, tests that its code hash is the first and the source ser-
vice’s hash is second. Thus, it has confirmed by the successful
retrvfm that the prior entry also represented its identity
correctly. When extending a trust chain, it pushes its intended
recipient’s hash to the front of the list.

If an observer, seeing the trust chain, knows that the front
n entries are compliant roles we have specified, it follows that
the n + 1st entry is the actual source of the record retrieved
by the nth entry. If that hash is also known to be compliant,
this process can repeat.

We have successfully designed and verified protocols rely-
ing on trust chains of length up to five (see § IX).

C. The symmetric key distributor service

The anchor service may be used with any dh . A useful dh
is a symmetric key distributor service, whose hash we will
write skdh . The symmetric key distributor program retrieves
ks packaged with the trust chain trch = skdh :: anch :: ⟨⟩,
checking its hash skdh and its source anch . It then uses ks to
decrypt a message from the DA. This message should contain:

• a target service hash tgth for which a new symmetric key
k should be derived;

• a trust chain trch ′;
• a payload payld to pass to the service tgth when it runs.

The distributor service checks that trch ′ = trch . If so, skdh
derives the key k = kdfh(ks, tgth). It protects an extended
trust chain, the payload, and this key k for tgth:

protfor tgth (imid , (tgth :: trch), payld , k)

into shared storage, after which it zeroes its unshared memory
and exits. On device imid , k can only by obtained by the
service tgth . Since the DA can compute k = kdfh(ks, tgth), k
enables the DA to create an authenticated, confidential channel
to imid where only service tgth can be the peer.

D. Analyzing symmetric key distribution

This layer of analysis has a role representing the symmetric
key distributor service on the device, together with a role use-
it that retrieves the distributor’s key and uses it generate a
confirmation message. A third role on the DA delivers the

Metal room activity
from Fig. 3
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VV

**VVV ks,imid,...
[[[[[[[[[
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Fig. 4. Distributor request

distribution request to the device. It terminates successfully
after receiving a confirmation message from tgth .

The analysis for compliant code hashes for anch , skdh ,
and the target service tgth appears in Fig. 4. The distribution
service uses ks generated from r0 given in Fig. 3; it handles
the request and derives k, protecting it for tgth . The latter uses
k to prepare a confirmation for the requester. The value seed
is stored in state in the DA, while the value ks is stored in the
device state inside a protect-for record, generated in the lower
left node of Fig. 3.

If tgth is not assumed compliant, a separate analysis
shows that, as an alternative to Fig. 4, wc-retrieve can
expose k. This is correct in our strong adversary model.

Because the arrows in Fig. 4 point out of the box at the
upper right, the behaviors in the remainder of the diagram must
come after the anchoring ceremony. But because no arrows
point into the box at the upper right, no part of the remainder
has to come before the anchoring ceremony. Assuming that
the values stored in state records persist, the distributor may
be used to set up keys for software long after the ceremony in
the metal room, e.g. when the device is in orbit on a satellite.
This functionality assures long-term remote execution without
local contact.

IX. DELEGATING SIGNING KEYS

A delegation service holding a signing key dk behaves as
follows to generate a signing key for a service sh:

1. It generates a fresh target signature key pair (sk, vk);
2. It emits a certificate-like message signed with dk that

binds the new verification key vk to sh and the device
imid and additional information. We call this a delegation
certificate.

3. It protects the signing key sk and additional information
for the exclusive use of service sh , placing it in shared
storage. It then zeroes its unshared memory and exits.

If a recipient knows the delegation service generated the
delegation certificate and observes a message signed with sk, it
can infer sh has been active on imid . To ensure the delegation
service generated the certificate, we (in turn) use a delegation
set-up service to get a CA certificate for dk. Call the delegation
service’s hash dsh and the set-up service’s hash suh .

The delegation set-up service acts as follows:
1. It obtains a certify request ultimately from the CA con-

taining a fresh serial number for the resulting certificate;
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2. It generates a signing key pair (dk, dvk) for dsh;
3. It transmits a proof-of-possession message using the

signing key dk to the CA on an authenticated channel;
4. It receives a certificate; and
5. It protects dk together with additional information for the

sole use of dsh into shared storage; it zeroes its unshared
memory and exits.

The additional information mentioned includes trust chains
asserting full data provenance (§ VIII-B).

A. Assumptions and security goal for delegation

Our delegation scheme relies on the assumptions:
(i) the CA is uncompromised;

(ii) the CA receives the proof-of-possession from suh on
imid on an authenticated channel when certifying dvk.

The anchoring in § VIII will provide the authenticated channel
required in Assumption (ii). Moreover, for a particular target
service with service hash sh one may assume:
(iii) the service sh uses sk for signing messages, but not in

any other way; hence sh does not disclose sk.
Suppose one observes: A digital certificate m1 from CA

binding dvk to dsh on imid ; a delegation certificate m2

binding vk with sh on imid ; and a message m3 = [[m0 ]]sk
verifying under vk.

Then our main security goal is: When assumptions (i) and
(ii) hold, and (iii) holds for this sh , then, on device imid :

1. The delegation set-up service has generated dk, obtained
the certificate m1 on dvk and dsh , and protected dk solely
for the delegation service dsh;

2. The delegation service dsh generated (sk, vk), emitted the
certificate m2 on sh and vk, and protected sk for the sole
use of the service sh;

3. This service sh used sk to sign m0, yielding m3.
The observer thus infers, subject to (i)–(iii), that the delegation
process proceeded correctly, and that sh is responsible for m0.
This is the assured remote execution claim for m0.

B. Message forms

We use tags to distinguish tuples of components that might
be confused. Here, we only show the components, not the tags.
The certification request contains the components:

imid , dsh, suh, trch, serial ,CA,

where trch is a trust chain acceptable to the CA. The proof-
of-possession is signed with the signing part of the key pair
and contains the verification key:

[[ serial , imid , dsh, suh, trch, dvk ]]dk;

the CA must ascertain that it arrives on an authenticated
channel from service suh running on imid . The anchoring
enables this. The resulting certificate is of the form:

[[ imid , dsh, suh, trch, serial , dvk ]]CA.

The set-up service protects (dk, dvk) plus an expanded trust
chain trch ′ = dsh :: suh :: trch via protfor. The delegation
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Fig. 5. Message m3 signed with delegated key; ⋆ authenticated channel

service then uses retrvfm to recover the key pair (dk, dvk)
and trch ′. When generating a key pair (sk, vk) for a target
service sh , it protects sh :: trch ′ and (sk, vk) for sh with
protfor, and emits a delegation certificate

[[ imid , sh, trch ′, n, vk ]]dk.

C. Delegation analysis

We analyze the delegation mechanism over a generic au-
thenticated channel by querying what must have occurred if
the following three messages are observed:
m1: a certificate [[ imid , dsh, suh, trch, serial , dvk ]]CA for the

delegation verification key dvk;
m2: a delegation certificate [[ imid , sh, trch ′, n, vk ]]dk for the

service sh’s key vk; and
m3: a message [[m0 ]]sk in which m0 is signed by some sk

forming a key pair (sk, vk) with the certified vk.
These messages are in the three left columns of Fig. 5.

Fig. 5 shows the single result of CPSA’s analysis under the
assumptions (i)–(iii) from § IX-A. CPSA determines this is the
only way that the certificates and signed message [[m0 ]]sk can
be observed, subject to (i)–(iii).

In this scenario, [[m0 ]]sk was in fact generated by the
expected (rightmost) role instance sh, which obtained its key
from the delegation service to its left; that in turn generated
the certificate on vk and obtained its signing key dk from the
delegation set-up service preceding it, which in fact interacted
with the CA to generate the certificate.

Assured remote execution. Fig. 5 shows the assured remote
execution guarantee, subject to assumptions (i)–(iii). Messages
signed by sk come from the program sh on device imid .

As usual, we can build authenticated and confidential chan-
nels to sh on top of this, e.g. using m0 to send a public key
for a Key Encapsulation Mechanism [46].

D. Adapting delegation to the anchor

Anchoring provides a concrete realization of the authenti-
cated channel for the proof-of-possession. The symmetric key
distributor (§ VIII-C) generates ksud = kdfh(ks, suh); suh
uses it to encrypt the proof-of-possession to the CA.

The symmetric key distributor receives a payload payld
from the DA when deriving a key, which it protects for
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Fig. 6. Message m3 signed, with anchoring and ⋆⋆ encrypted

the recipient with the key. We use the CA’s certify request
imid , dsh, suh, trch, serial ,CA as this payld . The delegation
set-up service retrieves this using retrvfm, together with a
trust chain trch1 and the derived key ksud. The trust chain
trch is the DA’s acceptable chain of custody for ksud, while
trch1 contains its actual history, as analysis confirms. The set-
up service does not proceed unless trch = trch1.

Since anch , skdh , suh , and dsh are all in trch , the CA
emits a certificate only when the trust chain is acceptable. We
consider the case that they are all compliant.

If the target service hash sh is compliant, analysis yields
a single possibility shown in Fig. 6 that enriches the Fig. 5.
The proof-of-possession pop is encrypted under ksud on the
⋆⋆ arrow from suh to CA. If sh may not be compliant, a
wildcat retrieve role may alternatively extract and disclose sk,
instead of sh’s run, as expected.

About the diagrams. We have redrawn and simplified
CPSA’s diagrams. We reordered role instances for clarity. We
grouped copies of Fig. 3 in a single box. We combined
adjacent state nodes that are distinct for CPSA. CPSA also
emits information about messages transmitted and received,
etc., mentioned here only in our accompanying text.

X. RELATED WORK

A. Trusted Execution Environments

CAIF is a kind of TEE, like Intel’s SGX and TDX [14], [25],
AMD’s SEV [26], and research such as Sancus [36], [37] and
Sanctum [15] and Keystone [28] for RISC-V. Schneider et al.’s
recent survey on TEEs and their implementation choices [45]
identifies four main security properties for TEEs (p. 1). One
is a weak, launch-time version of assured remote execution;
the second covers our address space requirements (§ V-A, 1–
2); the third, concerning trusted IO, lies outside our current
goals; and the fourth is a data-protection goal to which our
protfor provides an elegant solution.

CAIF inherits many aspects of previous TEEs. The protected
code segment is available in SGX, and is featured in Sancus.
An intrinsic secret used for key derivation is present in SGX;

a shared secret like ks is also in Sancus. Sancus achieves
software-independent assured remote execution of a particular
TEE without asymmetric cryptography in the trust mechanism.

However, our protfor data escrow is distinctive. The
computation of the protfor key kdfh("pf", IS , src, dst),
while straightforward, appears not to have been considered
in any previous TEE design. The SGX egetkey primi-
tive yields nothing similar. The data source obtains a value
like kdfh("c", IS , src); the data destination, receives
kdfh("c", IS , dst). These incomparable keys yield no
shared secret; so confidential delivery of data between TEEs
seems to require asymmetric cryptography.

Allowing confidential delivery between TEEs without any
dependence on long-term asymmetric cryptography is a new
contribution of CAIF, enabling us to install new digital signa-
ture algorithms securely long after anchoring.

SGX’s egetkey cannot satisfy our ideal functionality.
Lemma 1 says of IF that every successful icheck for Ps is
preceded by Ps executing an iattest. If Ps receives a key
k via egetkey and broadcasts it, then the adversary can
create MACs that will pass ckattest without Ps executing
attestloc. This pattern distinguishes the SGX-style mech-
anism from IF.

Nor can we provide a “logging enclave” based on
egetkey, i.e. an enclave Pℓ providing reliable logging func-
tionality for other enclaves Ps. The obstacle is that Pℓ must
know Ps has taken the attestloc-like action to request
the log record. If Ps discloses its egetkey key, or any key
used to authenticate log requests to Pℓ, then Pℓ will emit the
log record when other parties forge log requests. This again
distinguishes the SGX-style logging enclave from IF.

In practice, there is often pressure to act on data in place,
rather than copying it into local memory first. This has
been the source of significant TrustZone attacks, exacerbated
because the TrustZone “Secure World” has memory privi-
leges [33]. Designers of systems based on CAIF will need care
to handle these pressures safely.

B. Ideal functionality methods

§ VI shows that CAIF, when implemented with strong cryp-
tography, is indistinguishable from the ideal functionality IF.
Hence our protocol modeling also uses a simple, IF-style state-
based treatment of the CAIF instructions. Corollary 1 ensures
that no tractable observer can tell the difference anyway.

This strategy derives ultimately from Goldreich, Gold-
wasser, and Micali’s work on random functions [20], showing
a notion of pseudorandomness to be indistinguishable from
random for any tractable observer. Canetti’s classic on Uni-
versal Composability [11] confirms its value vividly; it shows
how to implement many functionalities securely and justifies
their use in all higher level protocols. An enormous literature
ensued; our Theorem 1 being a small instance of this trend.

C. Protocol analysis

Analyzing security protocols has been a major undertaking
since the late 1970s [35]; Dolev and Yao suggested crypto-
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graphic messages be regarded as forming a free algebra and us-
ing symbolic techniques [16]. A variety of formal approaches
follow them, e.g. [9], [31], [42]. Computational cryptography
also suggests methods for protocol verification [6], [10]. This
raises the question whether symbolic methods are faithful
to the cryptographic specifics, with a number of approaches
yielding affirmative results in some significant cases [1], [32],
[4]. Our Thm. 1 provides some support for the soundness of
our symbolic protocol analysis.

Our protocols read and write state records. State raises
distinct problems from messages. These could be addressed
in Tamarin, whose multiset rewriting model is fundamentally
state-based [30]. By contrast, CPSA offers state in a primarily
message-based formalism [22], [41], [23]; for its current treat-
ment of state, see its manual [29, Ch. 8]. Squirrel interestingly
expresses state in a computationally sound way [3].

CPSA has, helpfully, two modes. As a model finder it com-
putes the set of essentially different, minimal executions [21].
This guides protocol design, showing what is achieved by
protocols before they meet their goals. CPSA is also a theorem
prover for security goals proposed by its user; it produces
counterexamples otherwise [43].

XI. CONCLUSION

CAIF’s minimal hardware ensures the local service-to-
service provenance of data, and its protection for known peer
services. Equipped with strong symmetric cryptoprimitives,
CAIF provides a secure implementation of an ideal function-
ality achieving provenance and protection directly.

We designed a sequence of protocols to run atop CAIF. They
start with an initial secure anchoring, a ceremony in a protected
space, to establish a secret ks shared with an authority. This
key and its derivatives, protected by protfor, yield channels
to known services on the device. These channels may be used
from distant locations, e.g. if the device is on a satellite, to
assure remote execution for new programs.

A delegation service using new algorithms can yield trust-
worthy certificate chains for signing keys usable only by
known services on the device. So assured remote execution
can outlast the safety of any one asymmetric algorithm.

This is one core need for secure reprogramming: it autho-
rizes new programs for remote interactions. A second need
is a way to deauthorize old programs, blocking rollback
attacks, in which the adversary benefits by interacting with
a deprecated version. Thus, secure reprogramming also needs
irreversible changes, either to prevent the old programs from
running, or at least to block access to the keys that previously
authenticated them. Although this appears to require little more
than monotonic counters and constraints on which services can
advance them, it remains as future work.
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Tilo Müller, and Felix Freiling. Sancus 2.0: A low-cost security
architecture for IoT devices. ACM Trans. Priv. Secur., 20(3):7:1–7:33,
July 2017.

[38] National Institute of Standards and Technology. FIPS 203 (draft):
Module-lattice-based key-encapsulation mechanism standard. https:
//doi.org/10.6028/NIST.FIPS.203.ipd, August 2023.

[39] National Institute of Standards and Technology. FIPS 204 (draft):
Module-lattice-based digital signature standard. https://doi.org/10.6028/
NIST.FIPS.204.ipd, August 2023.

[40] National Institute of Standards and Technology. FIPS 205 (draft):
Stateless hash-based digital signature standard. https://doi.org/10.6028/
NIST.FIPS.205.ipd, August 2023.

[41] John D. Ramsdell, Daniel J. Dougherty, Joshua D. Guttman, and Paul D.
Rowe. A hybrid analysis for security protocols with state. In Integrated
Formal Methods, pages 272–287, 2014.

[42] John D. Ramsdell and Joshua D. Guttman. CPSA4: A cryptographic
protocol shapes analyzer. The MITRE Corporation, 2023. https://github.
com/mitre/cpsa.

[43] Paul D. Rowe, Joshua D. Guttman, and Moses D. Liskov. Measur-
ing protocol strength with security goals. International Journal of
Information Security, February 2016. DOI 10.1007/s10207-016-0319-z,
http://web.cs.wpi.edu/∼guttman/pubs/ijis measuring-security.pdf.

[44] John Rushby. Noninterference, transitivity, and channel-control security
policies. SRI International, Computer Science Laboratory, 1992.

[45] Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Cap-
kun, and Ronald Perez. SoK: Hardware-supported Trusted Execution
Environments. https://arxiv.org/pdf/2205.12742, May 2022.

[46] Victor Shoup. A proposal for an ISO standard for public key encryption.
Cryptology ePrint Archive, 2001. https://eprint.iacr.org/2001/112.pdf.

CONTENTS

I Introduction 1

II Current challenges 2
II-A Background challenges . . . . . . . . . . . . . 2
II-B A CAIF application: Satellite reprogramming . 2

III An Ideal Functionality for CAIF 3
III-A Main elements . . . . . . . . . . . . . . . . . 3
III-B Behavioral lemmas about IF . . . . . . . . . . 3

IV Using the CAIF functionality 4
IV-A Satellite reprogramming via CAIF . . . . . . . 4
IV-B Techniques for effective CAIF use . . . . . . 5

V CAIF Devices 6
V-A CAIF control over services . . . . . . . . . . 6
V-B CAIF instructions . . . . . . . . . . . . . . . 6
V-C Auxiliary operations . . . . . . . . . . . . . . 7
V-D CAIF devices . . . . . . . . . . . . . . . . . . 7

VI CAIF securely implements IF 8
VI-A Defining advantages . . . . . . . . . . . . . . 8
VI-B Two lemmas . . . . . . . . . . . . . . . . . . 9
VI-C Proving secure implementation . . . . . . . . 9

VII Assured Remote Execution Strategy 9
VII-A Achieving Assured Remote Execution . . . . . 9
VII-B Compliant roles and adversary roles . . . . . . 10

VIII Anchoring a CAIF Device 11
VIII-A Analyzing symmetric anchoring . . . . . . . . 11
VIII-B Trust chains . . . . . . . . . . . . . . . . . . 12
VIII-C The symmetric key distributor service . . . . . 12
VIII-D Analyzing symmetric key distribution . . . . . 12

IX Delegating Signing Keys 12
IX-A Assumptions and security goal for delegation . 13
IX-B Message forms . . . . . . . . . . . . . . . . . 13
IX-C Delegation analysis . . . . . . . . . . . . . . . 13
IX-D Adapting delegation to the anchor . . . . . . . 13

X Related Work 14
X-A Trusted Execution Environments . . . . . . . . 14
X-B Ideal functionality methods . . . . . . . . . . 14
X-C Protocol analysis . . . . . . . . . . . . . . . . 14

XI Conclusion 15

References 15

16

https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://github.com/mitre/cpsa/blob/master/doc/cpsa4manual.pdf
https://github.com/mitre/cpsa/blob/master/doc/cpsa4manual.pdf
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://github.com/mitre/cpsa
https://github.com/mitre/cpsa
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
https://arxiv.org/pdf/2205.12742
https://eprint.iacr.org/2001/112.pdf

	Introduction
	Current challenges
	Background challenges
	A CAIF application: Satellite reprogramming

	An Ideal Functionality for CAIF
	Main elements
	Behavioral lemmas about IF

	Using the CAIF functionality
	Satellite reprogramming via CAIF
	Techniques for effective CAIF use

	CAIF Devices
	CAIF control over services
	CAIF instructions
	Auxiliary operations
	CAIF devices

	CAIF securely implements IF
	Defining advantages
	Two lemmas
	Proving secure implementation

	Assured Remote Execution Strategy
	Achieving Assured Remote Execution
	Compliant roles and adversary roles

	Anchoring a CAIF Device
	Analyzing symmetric anchoring
	Trust chains
	The symmetric key distributor service
	Analyzing symmetric key distribution

	Delegating Signing Keys
	Assumptions and security goal for delegation
	Message forms
	Delegation analysis
	Adapting delegation to the anchor

	Related Work
	Trusted Execution Environments
	Ideal functionality methods
	Protocol analysis

	Conclusion
	References

