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Abstract—When the Ethereum blockchain got updated to use
the Kate-Zaverucha-Goldberg (KZG) polynomial commitment
scheme (PCS) in March 2024, a rigorous and formal proof of
the KZG becomes necessary for more security. This can be
achieved by formalization in an interactive theorem prover like
Isabelle, as we will outline in this paper. We give an insight into
the formalization of the KZG commitment scheme in Isabelle
and discuss the difficulties and advantages. This work outlines
— to our knowledge — the first formalization of polynomial
commitment schemes so far. It is a vital and foundational
step towards more reliably safe and secure blockchains and
applications in various other cryptographic protocols.

Index Terms—KZG commitment scheme, security, verification,
Isabelle.

I. INTRODUCTION

When the Ethereum blockchain updated its protocols in
March 2024, it changed some underlying crypto schemes
— now using the polynomial commitment scheme (PCS) by
Kate, Zaverucha and Goldberg (KZG). As Ethereum is the
blockchain with the largest market capitalization after Bitcoin,
it is essential to show the security of the blockchain and its
cryptographic components.

In order to validate the security of cryptographic protocols
such as blockchains, we first need to prove all cryptographic
primitives secure. In our case, we analyse the KZG polynomial
commitment scheme (in the following abbreviated just by
KZG) for the Ethereum blockchain. A commitment scheme is
a primitive where one party commits to a chosen (but hidden)
value and the other party may later verify this commitment
once it is revealed. For polynomial commitment schemes,
the values we commit to are polynomials, also allowing a
pointwise revelation in the commitment. The KZG scheme
is the first and most widely used PCS.

A trend in cryptographic security proofs is to provide
rigorous security specifications and proofs of cryptographic
primitives and protocols in formal theorem provers. Such for-
malizations and verifications may uncover security flaws and
improve the trustworthiness in the security of crypto primitives
or protocols. A real-world example for such a discovery of
security issues is the formalization of the protocols for Jitsi
video conferences [15] and Matrix [1].

A. Related work

The KZG [14] was the first PCS and is still the most efficient
and widely used PCS. Nowadays, there are several types of
PCS, including pairing-based approaches like the KZG (e.g.
[6]). Other constructions of PCSs use groups of unknown
order [9], reed-solomon codes [2], [4], [5] or inner-product-
arguments [7]. In our work, we formalize the KZG using the
theorem prover Isabelle [16], [17] using libraries contained in
the Archive of Formal Proofs [13]. Other efforts in formalizing
cryptography include EasyCrypt [12], CryptoVerif [8] and
CryptoLine [11].

B. Contributions

With this paper, we outline an ongoing effort to formally
state and verify the specifications and security properties of
KZG. Our work is build on the CryptHOL [3] framework in
the theorem prover Isabelle [17]. In a first step, we define the
KZG, give a formal specification and verify the correctness. In
a second step, we formally verify the most important security
properties: polynomial binding, evaluation binding and hiding.
To our knowledge, this is the first formal verification of a
polynomial commitment scheme in a theorem prover so far.

II. FORMAL SPECIFICATIONS AND CORRECTNESS OF KZG

Let us look at a PCS as a protocol between a committer
(Alice) and a verifier (Bob). After a key generation, Alice
commits to a polynomial and calculates a commitment for this
polynomial. Later, Alice can reveal the polynomial (possibly
pointwise), such that Bob can verify the commitment to the
polynomial. The KZG is a construction of a PCS.

In the following, let p be a prime and t a natural number
that is large in comparison to p. Let Gp denote the group of
the KZG and g a fixed generator.

The KZG has a trusted setup, namely the key genera-
tion denoted by KeyGen, which generates the public key
PK for the main protocol. KeyGen samples a uniformly
random field element α ∈ Zp and outputs the public key
PK = (g,gα,gα
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knowledge of α.
The PCS functions for KZG are:

Commit. Commit (PK, ϕ) takes the public key PK and a
polynomial ϕ of degree at most t+ 1. It returns gϕ(α) as the
commitment to ϕ.



CreateWitness. CreateWitness(PK, ϕ, i) takes the public key
PK, a polynomial ϕ and a point i and returns (i, ϕ(i)) and
a witness ωi = gψ(α) where ψ(x) = ϕ(x)−ϕ(i)

(x−i) . Intuitively,
CreateWitness reveals the point (i, ϕ(i)). This can be verified
without revealing the entire polynomial ϕ.
VerifyEval. VerifyEval(PK,C, i, ϕi, ωi) takes the public key
PK, a commitment C to a polynomial ϕ and a point (i, ϕi)
with a witness ωi and outputs a boolean. Intuitively, it checks
that the point (i, ϕi) is a point of ϕ using the witness and the
commitment.
Open. Open(ϕ) takes a polynomial ϕ and reveals it.
Verify. Verify(PK,C, ϕ) takes the public key PK, a commit-
ment C and a polynomial ϕ. It checks that the commitment
corresponds to the polynomial.

Our first contribution is a formalization of the above func-
tions in Isabelle and a formal proof that an interaction between
an honest committer and verifier always yields a correct result.

III. FORMALLY VERIFYING SECURITY PROPERTIES

Our main contribution is a formal proof of the KZG security
properties. In contrast to the reduction style arguments in the
pen-and-paper proof [14], we rewrite the security properties
proofs using the rigorous game-based approach after Shoup
[19]. These games are then reduced to hardness assumptions
(e.g. Discrete Log) via so called game-hops (see Appendix
VI).

In the theorem prover Isabelle, we represent games and
game-hops as probability mass functions and relations between
them. The easiest way to do this formally is using the
Giry monad [10], [18]. With the monadic structure, we can
formulate games as probabilistic algorithms and have a one-
to-one translation between them.

In the following, let A denote a probabilistic polynomial
time (PPT) adversary. Each property holds if and only if the
probability of winning the property-game is negligible for any
PPT adversary A. We show the security properties typical for
PCSs:
Binding. The binding property intuitively asks if an adversary
can find a commitment C and two polynomials that verify
for the same commitment C. We distinguish between polyno-
mial binding (verifying and opening the whole polynomial)
and evaluation binding (verifying witnesses for point-wise
reveals). The corresponding games can be found in the Ap-
pendix VII.
Hiding. We define the hiding game:

ϕ← unif. random from {ϕ ∈ Zp[x] s.t. deg(ϕ) ≤ t},
PK ← KeyGen,
C = Commit(PK, ϕ),

wtnss = {CreateWitness(PK, ϕ, i) for i ∈ I},
ϕ′ ← A(PK,C,wtnss),

return ϕ = ϕ′


The adversary wins if he can extract the polynomial ϕ from the
commitment C and t witness tuples. Note that the evaluations
of ϕ are at t arbitrary points as I is arbitrary.

IV. PROOFS

The proofs for Polynomial Binding and Evaluation Binding
in [14] can be adapted to a game-based proof quite easily.
They reduce to the t-Strong Diffie-Hellmann assumption [14].

However, the hiding game and its proof cannot be deduced
trivially. The proof for hiding given in [14] is a reduction style
argument to the Discrete Log (DL) assumption. The main
idea is to sample t random points (i, ϕ(i)), turn them into
group coordinates (i,gϕ(i)), add the DL-instance at the value
0, and interpolate gϕ to extract the commitment C = gϕ(α).
The main problem in the formalization of the pen-and-paper
proof is that the original proof samples the indices i ∈ I
uniformly at random whereas the hiding game requires I to
be an arbitrary list (not necessarily uniformly random). In
conclusion, we cannot construct a game-based proof from this
reduction trivially.

We propose two changes in the reduction: Firstly, we change
the distribution of the set I from uniformly random to arbitrary
to match the hiding game definition. For an arbitrary random
list I , we still sample the evaluations ϕ(i) uniformly random.
Secondly, instead of using the DL-instance at 0, we now
choose a value x deterministically such that x /∈ I and use
the DL-instance at x.

The second change is necessary for the correctness of the
reduction. To interpolate a polynomial, the evaluation points
must be distinct. The probability of 0 colliding with any of the
t uniformly random chosen elements of I is negligible (due to
the parameter choices). However, we cannot easily express the
probability of 0 colliding with values in the arbitrary list I . We
circumvent reasoning about probability and use a deterministic
algorithm to choose a value x for the DL-instance, such that
x /∈ I .

V. CONCLUSION

Our formalization in Isabelle is (to our knowledge) the
first formalization of a polynomial commitment scheme in a
theorem prover. We formalized the specification of KZG and
verified the correctness as well as the polynomial and evalua-
tion binding. For the formalization of the security properties,
we needed to rewrite the original reduction proofs as game-
based proofs. During the formalization of the hiding property,
we resolved issues with the translation to game-based proofs.

This ongoing effort of formalizing the KZG is a first step
towards verifying blockchain security primitives.
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VI. GAME-HOPS IN THE KZG SECURITY PROOFS

In the KZG security proofs, we use three kind of game-
hops:

1) Bridging Steps: Restating the game in an equivalent way.
2) Game-hops based on failure events: Two games are

equivalent except for a specific failure occurring with
negligible probability.

3) Over-estimations: Dropping a condition that needs to
hold for the original game, thus obtaining a game with
a higher winning probability for the adversary.

VII. GAMES FOR POLYNOMIAL AND EVALUATION
BINDING

Polynomial Binding. We define the polynomial binding
game: 

PK ← KeyGen,
(C, ϕ, ψ)← A(PK),

b = Verify(PK,C, ϕ),
b′ = Verify(PK,C, ψ),

return ϕ ̸= ψ ∧ b ∧ b′


The adversary wins if he can find a commitment C and two
polynomials that are a verifiable opening for C.
Evaluation Binding. We define the evaluation binding game:

PK ← KeyGen,
(C, i, ϕi, ωi, ϕ

′
i, ω

′
i)← A(PK),

b = VerifyEval(PK,C, i, ϕi, ωi),
b′ = VerifyEval(PK,C, i, ϕ′i, ω

′
i),

return ϕi ̸= ϕ′i ∧ b ∧ b′


The adversary wins if he can find a commitment C and a

value i with two different claimed evaluation values, ϕi and
ϕ′i, and according witnesses, ωi and ω′

i, such that the points
(i, ϕi) and (i, ϕ′i) both verify.
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