
Modular Implementation and Formalization of Dynamic Policies
Work In Progress

Antonio Zegarelli

IMDEA Software Institute

Madrid, Spain

Niki Vazou

IMDEA Software Institute

Madrid, Spain

Marco Guarnieri

IMDEA Software Institute

Madrid, Spain

ABSTRACT

In Information Flow Control (IFC) expressiveness, i.e. being able to

model multiple scenarios, is a crucial aspect, especially in the con-

text of dynamically evolving security requirements. Those dynamic

scenarios introduce complexities due to varying security interpreta-

tions. Broberg et al. identified "facets of dynamic policies", patterns

of information flow that may be considered secure or insecure de-

pending on the context. Therefore, our research aims to establish a

robust framework that facilitates the design and implementation

of the different interpretations of facets within a single, modular

enforcement mechanism. We propose, in Haskell, an abstract defini-

tion of a monadic IFC mechanism, that, based on the instantiation,

can account for the different interpretations of facets. Our ongoing

work involves the formalization of the respective security condi-

tions, the study of their combination and a LiquidHaskell proof

mechanization. This with the aspiration to improve the reasoning

about dynamic policies and their associated facets, especially in the

case of future extensions.

KEYWORDS

Information Flow Control, Language-based Security, Dynamic Poli-

cies, Haskell, Formal Verification

1 INTRODUCTION

Information Flow Control (IFC) is a set of techniques for ensuring

the secure exchange of information in a system. For example, in

a system that processes the sensitive information of patients in a

hospital, we want to ensure that the patients’ information flows to

the doctors, but not to unauthorized entities.

Stating which entities are authorized to access the information

is done by defining a security policy which is said static if it doesn’t
change over time, or dynamic otherwise. For example, on the left of

Table 1 we have an example, presented in [4], where information,

at line 1, is allowed to flow from the patient to the hospital, denoted

as Patient → Hospital. However, after the patient has left the
hospital, denoted as Patient ↛ Hospital at line 3, and a new

doctor joins the hospital, denoted as Hospital→ Doc at line 4, the
information should not flow to the doctor.

Interestingly, the semantics of IFC security properties, when

policies change over time, are not well defined. For example, in the

right part of Table 1 we have another example from [4], with the

same structure of information flows, but different security inter-

pretations. In this case, line 1 allows information to flow from the

input to the sanitizer, denoted as Input → Sanitizer. Once the
input has been sanitized this flow is stopped, denoted as Input↛
Sanitizer at line 3, and the information can flow to the database,

denoted as Sanitizer → DB at line 4. Now the input should be

allowed to be stored into the database.

Table 1: Examples of time transitive flow

Forbidden Allowed

1 -- Patient → Hospital
2 h <- receive p
3 -- Patient ↛ Hospital
4 -- Hospital → Doc
5 share h Doc

1 -- Input → Sanitizer
2 s <- sanitize input
3 -- Input ↛ Sanitizer
4 -- Sanitizer → DB
5 store s

From these two examples, we see that the security properties of

programs with dynamic policies can have different interpretations.

Broberg et al. [4] call such interpretations facets of dynamic policies.
In the right of Table 1, we have a time-transitive flow facet, where

information can flow from the input to the database via the sanitizer,

even though there is no moment in time where the flow from the

input to the database is directly enabled. In the left of Table 1,

we have another facet, where time-transitive flow is forbidden.

As another facet, we can consider the replaying facet where the

information released is permanent, and the non-replaying facet

where the information released is temporary.

In this work, we aim to establish a framework that enables the

design and implementation of different facet interpretations within

a single enforcement mechanism. In particular, in § 4 we define

a family of security conditions that can be used to define differ-

ent security interpretations. All these conditions share the same

structure, which can be instantiated to different facets.

These security conditions are enforced by an IFC system, which

generalizes the SLIO system [5]. Our IFC system is a label based,

monadic system, where the labels are used to track the information

flows and monadic operations are used to enforce the security

conditions.

In § 2 we present the core calculus formalism of the system,

which is parametric with respect to an interface that in § 5 is instan-

tiated to different facets. In § 7 we present the implementation of

the system in Haskell, which uses Haskell’s type class mechanism

to define the interface and the instances for the facets.

Finally, we use the theorem prover of Liquid Haskell to mecha-

nize the metaproof that the system enforces the security conditions,

for each of the facets. Such mechanizations are difficult, due to

the hight complexity of the dynamic policies. To the best of our

knowledge, there is no mechanized security proof for IFC systems

enforcing dynamic policies, while the paper and pencil proof of

SLIO [5] is incorrect since the security metafunction (namely the

multilevel erasure) was wrongly defined (§ 4.1) and as a result the

implementation of the system is not correct with respect to the

definition of the security condition, as we discuss in § 6.2. Our

mechanization is a work in progress. Concretely, we have started

the mechanization for the time-transitive flow facet, but we have

Antonio Zegarelli, Niki Vazou, and Marco Guarnieri

Constants 𝑐 ::= True | False | 𝑖 | () | •
Values 𝑣 ::= 𝑐 | 𝑟𝑒𝑙 | 𝑝𝑠 | 𝑙 | 𝑥 | 𝜆𝑥.𝑒 | fix 𝑒 | M 𝑒 | LB 𝑙 𝑒 𝑖

Expressions 𝑒 ::= 𝑣 | 𝑒 𝑒 | if 𝑒 then 𝑒 else 𝑒
monadic | ret 𝑒 | 𝑒 »= 𝑒

labeled expressions | label 𝑒 𝑒 | unlabel 𝑒
toLabeled | toLabeled 𝑙 𝑒 | toLabRet Σ 𝑙 𝑒

policy expressions | setRel 𝑒 | getRel
Labels 𝑙 ::= PARAMETRIC

System refined policy 𝑝𝑠 ::= PARAMETRIC

User defined policy 𝑟𝑒𝑙 ::= PARAMETRIC

Relation R ::= lrt(Σ, 𝑙, 𝑙)
Label Ids 𝑠𝑖𝑑 ::= ∅ | (𝑙, 𝑖); 𝑠𝑖𝑑

State Σ ::= ⟨𝑠𝑖𝑑, 𝑙𝑠, 𝑝𝑠, 𝑟𝑒𝑙⟩
Label Set 𝑙𝑠 ::= ∅ | (𝑙, 𝑖); 𝑙𝑠

Configuration C ::= ⟨Σ | 𝑒⟩
Instance 𝐼 ::= opLabel(Σ, 𝑙, 𝑖) & opUnlabel(Σ, 𝑙, 𝑖)

& opToLabRet(Σ, Σ, 𝑙, 𝑖) & guard(Σ, 𝑙)
& stateGuard(Σ, Σ) & opState(Σ, 𝑒)
& policy(Σ, 𝑙, 𝑖, 𝑙)

Figure 1: Syntax of 𝜆𝐷𝑃
.

set up the system in a modular way such that it can be extended to

other facets.

In summary, the main contributions of this work are:

• We formalize a core calculus for a parametric IFC system

(§ 2), instantiate it to different facets (§ 5), and implement

it in Haskell (§ 7) using Haskell’s type class mechanism.

• Define security conditions (§ 4) for different security inter-

pretations (§ 5).

• We mechanize the proof that the enforcement system actu-

ally satisfies the security condition (§ 6.2). Our proof is a

work in progress but is aimed to be modularly extended to

different facets.

2 FORMALIZATION

This section presents the formalization of 𝜆𝐷𝑃
, a monadic 𝜆-calculus

and its abstract operational semantics. The semantics are abstract

in the sense that they are parametric in a set of operations that,

when instantiated, can implement various custom security condi-

tions. Hence the semantics is parametric in the security condition.

§ 2.1 presents the syntax of 𝜆𝐷𝑃
and § 2.2 presents its operational

semantics.

2.1 Syntax

Figure 1 presents the syntax of 𝜆𝐷𝑃
, which contains the syntactic

categories 𝑒 , 𝑣 , 𝑐 that represent expressions, values, and constants

respectively.

Constants 𝑐 consist of the boolean values True and False, the
unit value (), and identifiers, which are integers denoted by the

symbol 𝑖 . The symbol • is used to represent erased values and is

required by our metatheory (cf. § 6.2).

Values consist of constants (𝑐), the policy relation (𝑟𝑒𝑙), the system
refined policy (𝑝𝑠), labels (𝑙), variables (𝑥), functions (𝜆𝑥 .𝑒), and

recursive functions (fix 𝑒). The value (M 𝑒) is used to represent a

monadic value and the construct (LB 𝑙 𝑒 𝑖) represents a value that
labels with expression 𝑒 with label label 𝑙 and the unique identifier

𝑖 .

Context 𝐶 ::= · | 𝐶 𝑒 | fix 𝐶 | if 𝐶 then 𝑒 else 𝑒 | ret 𝐶
| 𝐶 »= 𝑒 | unlabel 𝐶 | label 𝐶 𝑒 | toLabeled 𝐶 𝑒

𝐼 ⊢ ⟨Σ1 | 𝑒1⟩ → ⟨Σ2 | 𝑒2⟩
𝐼 ⊢ ⟨Σ1 | 𝐶 [𝑒1]⟩ → ⟨Σ2 | 𝐶 [𝑒2]⟩

E-Cntx

Figure 2: Context for 𝜆𝐷𝑃
.

Pure Semantics 𝐼 ⊢ ⟨Σ | 𝑒⟩ → ⟨Σ | 𝑒⟩

𝐼 ⊢ ⟨Σ | (𝜆𝑥.𝑒) 𝑒𝑥 ⟩ → ⟨Σ | 𝑒 [𝑒𝑥/𝑥]⟩
E-App

𝐼 ⊢ ⟨Σ | if True then 𝑒1 else 𝑒2⟩ → ⟨Σ | 𝑒1⟩
E-TIf

𝐼 ⊢ ⟨Σ | if False then 𝑒1 else 𝑒2⟩ → ⟨Σ | 𝑒2⟩
E-FIf

𝐼 ⊢ ⟨Σ | fix (𝜆𝑓 .𝑒)⟩ → ⟨Σ | 𝑒 [(fix 𝜆𝑓 .𝑒)/𝑓]⟩
E-Fix

Figure 3: Pure fragment of the operational semantics.

Finally, expressions include the standard pure constructs, that is

values (𝑣), conditionals (if 𝑒 then 𝑒 else 𝑒), and function applica-

tion (𝑒 𝑒). The monadic constructs include the return (ret 𝑒) and
bind (𝑒 »= 𝑒) operations. The labeled construct label 𝑒𝑙 𝑒 is used
to label an expression 𝑒 with label 𝑒𝑙 and the unlabel 𝑒 operator
is used to remove the label from an expression. Following [8], the

toLabeled 𝑙 𝑒 operator is used to label an expression 𝑒 with the

label 𝑙 , to avoid the label creep problem, i.e., when the 𝑙𝑠 is increased

so much that no useful computation can be done. To securely exe-

cute this expression, the toLabRet Σ 𝑙 𝑒 operator is used internally

to keep track of the original state during evaluation. Finally, the

setRel 𝑒 and getRel operators are used to change and retrieve the
policy state, respectively.

2.2 Semantics

Here, we present the small-step, contextual operational semantics

of 𝜆𝐷𝑃
. This semantics is formalized as the relation 𝐼 ⊢ ⟨Σ1 | 𝑒2⟩ →

⟨Σ2 | 𝑒2⟩ indicating that, given the instance 𝐼 , the configuration
⟨Σ1 | 𝑒1⟩ (consisting of a state Σ1 and a monadic expression 𝑒1)

evaluates, in one step, to the configuration ⟨Σ2 | 𝑒2⟩. Next, we first
precisely formalize the notion of state for our semantics. Then,

we overview the operational rules formalizing our semantics. We

conclude by introducing the notion of traces, i.e., sequences of

configurations associated with a valid execution.

States. A state Σ is ⟨𝑠𝑖𝑑, 𝑙𝑠, 𝑝𝑠, 𝑟𝑒𝑙⟩, where 𝑠𝑖𝑑 is used to generate

unique identifiers for each label, 𝑙𝑠 is the current label set that con-

tains the labels of the values accessible in the current computation,

i.e., represents the security level of the computation, 𝑟𝑒𝑙 is the user

defined policy relation as in [5], and 𝑝𝑠 is the system refined policy

state, which tracks specific facet information. We define the initial

state Σ0 as having:

• Σ0 .𝑙𝑠 = ∅
• Σ0 .𝑠𝑖𝑑 = ∅
• Σ0 .𝑝𝑠 = 𝜀

• Σ0 .𝑟𝑒𝑙 = 𝜀

Modular Implementation and Formalization of Dynamic Policies
Work In Progress

Effectful Semantics 𝐼 ⊢ ⟨Σ | 𝑒⟩ → ⟨Σ | 𝑒⟩

𝐼 ⊢ ⟨Σ | ret 𝑣⟩ → ⟨Σ | M 𝑣⟩
E-Ret

𝐼 ⊢ ⟨Σ | M 𝑒𝑥 »= 𝑒⟩ → ⟨Σ | 𝑒 𝑒𝑥 ⟩
E-Bind

Σ2 = 𝐼 .opLabel(Σ1, 𝑙, 𝑖)
𝐼 .guard(Σ1, 𝑙) 𝐼 .stateGuard(Σ1, Σ2)

𝐼 ⊢ ⟨Σ1 | label 𝑙 𝑒⟩ → ⟨Σ2 | ret (LB 𝑙 𝑒 (Σ1 .𝑠𝑖𝑑 .𝑙))⟩
E-Label

𝐼 .stateGuard(Σ1, Σ2)
Σ2 = 𝐼 .opUnlabel(Σ1 {𝑙𝑠 := (𝑙, 𝑖) : Σ1 .𝑙𝑠}, 𝑙, 𝑖)
𝐼 ⊢ ⟨Σ1 | unlabel (LB 𝑙 𝑒 𝑖)⟩ → ⟨Σ2 | ret 𝑒⟩

E-Unlabel

𝐼 ⊢ ⟨Σ | toLabeled 𝑙 𝑒⟩ → ⟨Σ | 𝑒 »= 𝜆𝑥.toLabRet Σ 𝑙 𝑥⟩
E-ToLab

𝐼 .guard(Σ1, 𝑙) 𝐼 .stateGuard(Σ1, Σ2)
Σ2 = 𝐼 .opToLabRet(Σ1, Σ, 𝑙, Σ1 .𝑠𝑖𝑑 .𝑙)

𝐼 ⊢ ⟨Σ1 | toLabRet Σ 𝑙 (M 𝑒)⟩ → ⟨Σ2 | ret (LB 𝑙 𝑒 (Σ1 .𝑠𝑖𝑑 .𝑙))⟩
E-RToLab

Σ2 = 𝐼 .opState(Σ1, 𝑒) 𝐼 .stateGuard(Σ1, Σ2)
𝐼 ⊢ ⟨Σ1 | setRel 𝑒⟩ → ⟨Σ2 | ret ()⟩

E-SetRel

𝐼 ⊢ ⟨Σ | getRel⟩ → ⟨Σ | ret Σ.𝑟𝑒𝑙⟩
E-GetRel

Figure 4: Effectful fragment of the operational semantics.

where 𝜀 denotes the empty component with no information,

The Relation 𝑅 provides the operator for the user-defined policy

relation, i.e, lrt(Σ, 𝑙, 𝑙 ′) that returns 𝑇𝑟𝑢𝑒 if 𝑙 is allowed to flow to

𝑙 ’ according to Σ.
The instance 𝐼 is a set of abstract operations that are used to

define the semantics of the language and can be instantiated based

on the intended security:

• opLabel(Σ, 𝑙, 𝑖) returns a state tracking the label operation

effect.

• opUnlabel(Σ, 𝑙, 𝑖) returns a state tracking the unlabel op-

eration effect.

• opToLabRet(Σ, Σ0, 𝑙, 𝑖) returns a state tracking the tola-

beled operation effect.

• guard(Σ, 𝑙) is a predicate that checks if the information in

the computation is observable by 𝑙 .

• stateGuard(Σ, Σ′) is a predicate that checks if Σ’ is an
allowed state after Σ.

• opState(Σ, 𝑒) returns a state whose current 𝑟𝑒𝑙 is set to 𝑒 .
• policy(𝑙, 𝑖, 𝑙 ′, Σ) is the operator on the system refined pol-

icy.

In § 6.1 we provide a set of requirements that these operations

should satisfy to ensure the security of the system.

Operational Rules. First, we define context evaluation for expres-

sions in Figure 2 together with rule E-Cntx used for the evaluation.

Then, Figure 3 presents the pure fragment of the operational seman-

tics, i.e., E-App, E-TIf, E-FIf, E-Fix, that are the standard 𝜆-calculus

rules with capture-avoiding substitution denoted by 𝑒 [𝑒𝑥/𝑥] mean-

ing that 𝑥 in 𝑒 is substituted with 𝑒𝑥 .

Figure 4 presents the effectful fragment of the operational seman-

tics. The monadic rule E-Ret lifts a value in the monad, and rule

E-Bind binds the monadic value to the functional argument. Rule

E-Label creates a labeled value and uses the guard operation to

ensure that the labeling is allowed with respect to the current state.

Dually, rule E-Unlabel extracts data from a labeled values and

updates the state accordingly. Rule E-ToLab is used to avoid "label
creep" [9], to do so it binds the inner monad with the toLabRet Σ 𝑙 𝑒
operation that captures the original state. Rule E-RToLab is used

to restore the original state, taking into account the effects after

executing the inner monad of the corresponding E-ToLab, and re-

turn a labeled value. Finally, rule E-SetRel sets the current user

policy state and dually, rule E-GetRel returns the current user

policy state.

Example: Operational Semantics of SLIO. Based on the defini-

tions of the instance 𝐼 operations, our system encodes different

security policies. For example, the below instance defines the oper-

ational semantics for SLIO:

• opLabel(Σ, 𝑙, 𝑖) = Σ,
• opUnlabel(Σ, 𝑙, 𝑖) = Σ,
• opToLabRet(Σ, Σ0, 𝑙, 𝑖) = Σ {𝑙𝑠 :=, Σ0 .𝑙𝑠, 𝑝𝑠 := Σ0 .𝑝𝑠}
• guard(Σ, 𝑙 ′) = ∀(𝑙, 𝑖) ∈ Σ.𝑙𝑠 .policy(Σ, 𝑙, 𝑖, 𝑙 ′),
• stateGuard(Σ, Σ′) =∀(𝑙 ′, 𝑖′) ∈ 𝑙𝑠 .¬incUpperSet(Σ, Σ′, 𝑙 ′, 𝑖′),
• opState(Σ, 𝑒) = Σ {𝑟𝑒𝑙 := 𝑒},
• policy(Σ, 𝑙, 𝑖, 𝑙 ′) = lrt(Σ, 𝑙, 𝑙 ′).

where:

incUpperSet(Σ, Σ′, 𝑙, 𝑖) = ∃𝑙 ′ .¬policy(Σ, 𝑙, 𝑖, 𝑙 ′)∧policy(Σ′, 𝑙, 𝑖, 𝑙 ′)

Traces. Finally, we define a trace 𝑡𝑛 of length 𝑛 as the sequence

of the 𝑛 configurations generated by applying the rules of the

operational semantics for a starting configuration ⟨Σ | 𝑒⟩. Since
programs are deterministic, a trace 𝑡𝑛 is uniquely determined by its

initial configuration. For simplicity we omit the length 𝑛 whenever

it is not needed, i.e., we write 𝑡 instead of 𝑡𝑛 .

Definition 1 (Trace). A configuration ⟨Σ0 | 𝑒0⟩ produces a trace 𝑡𝑛
of configurations written ⟨Σ0 | 𝑒0⟩ ⇓ 𝑡𝑛 if there are configurations

⟨Σ0 | 𝑒0⟩ · ⟨Σ1 | 𝑒1⟩ · ... · ⟨Σ𝑛 | 𝑒𝑛⟩ s.t. ∀𝑖 ∈ [0, 𝑛 − 1] .𝐼 ⊢ ⟨Σ𝑖 | 𝑒𝑖 ⟩ →
⟨Σ𝑖+1 | 𝑒𝑖+1⟩.

3 ATTACKER MODEL

This section presents the attacker model, § 3.1 presents the observa-

tional power of the attacker, i.e., the information that the attacker

can get from the system, and § 3.2 presents two types of attackers

and how their knowledge is extended through observations.

3.1 Observation power

Let the initial expression be the initial secret input and the configu-

rations are the observations of the attacker we use term erasure to

remove non-observable information from the configurations as in

[5]. Below we define the function 𝑜𝑏𝑠
𝐴
(⟨Σ | 𝑒⟩) that determines if

an attacker can observe a configuration.

Definition 2. A configuration ⟨Σ | 𝑒⟩ is observable by an attacker

𝐴 if the label set of the configuration Σ.𝑙𝑠 is observable by 𝐴, i.e.,

𝑜𝑏𝑠𝐴 (⟨Σ | 𝑒⟩) � ∀(𝑙, 𝑖) ∈ Σ.𝑙𝑠 . policy(Σ, 𝑙, 𝑖, 𝐴)

Figure 5 defines the interesting cases of 𝜀
𝐴
(·) on traces, state, and

labeled values. The erasure of a trace 𝑡 , denoted 𝜀
𝐴
(𝑡), removes from

a trace 𝑡 all configurations not observable on level 𝐴, and applies

the erasure function on the remaining ones such that erasure is

applied both on the state and expression components.

Antonio Zegarelli, Niki Vazou, and Marco Guarnieri

Trace Erasure 𝜀
𝐴
(𝑡) = 𝑡 ’

𝜀𝐴 (⟨Σ | 𝑒⟩ · 𝑡) =
{

⟨𝜀
𝐴
(Σ) | 𝜀Σ

𝐴
(𝑒)⟩ · 𝜀

𝐴
(𝑡) if 𝑜𝑏𝑠𝐴 (⟨Σ | 𝑒⟩)

𝜀
𝐴
(𝑡) otherwise

State Erasure 𝜀
𝐴
(Σ) = Σ’

𝜀𝐴 (Σ) = ⟨𝑙𝑠, 𝜀Σ𝐴 (𝑝𝑠), 𝑟𝑒𝑙, 𝜀
Σ
𝐴 (𝑠𝑖𝑑)⟩

Label Ids Erasure 𝜀Σ
𝐴
(𝑠𝑖𝑑) = 𝑠𝑖𝑑’

𝜀Σ𝐴 (𝑠𝑖𝑑) =
{

(𝑙, 𝑖𝑥) : 𝜀Σ
𝐴
(𝑠𝑖𝑑) if ∀𝑖 < 𝑖𝑥 . policy(Σ, 𝑙, 𝑖, 𝐴)

𝜀Σ
𝐴
(𝑠𝑖𝑑) otherwise

System Policy Erasure 𝜀Σ
𝐴
(𝑝𝑠) = 𝑝𝑠’

𝜀Σ𝐴 (𝑝𝑠) s.t. ∀(𝑙, 𝑖), 𝑙
′ . policy(𝜀𝐴 (Σ), 𝑙, 𝑖, 𝑙

′) =
{

policy(Σ, 𝑙, 𝑖, 𝑙 ′) if policy(Σ, 𝑙, 𝑖, 𝐴)
false otherwise

Expression Erasure 𝜀Σ
𝐴
(𝑒) = 𝑒’

𝜀Σ𝐴 (LB 𝑙 𝑒 𝑖) =
{

LB 𝑙 𝜀Σ
𝐴
(𝑒) 𝑖 if policy(Σ, 𝑙, 𝑖, 𝐴)

LB 𝑙 • • otherwise

Figure 5: Erasure for non-trivial cases, the rest are homomor-

phisms.

The erasure on the state is defined such that 𝑙𝑠 and 𝑟𝑒𝑙 are left

unchanged, and 𝑠𝑖𝑑 and 𝑝𝑠 are erased with their respective erasure

functions. The 𝑠𝑖𝑑 component is erased so that the attacker can only

observe the current identifier of a label if all the labeled values with

such a label are observable. Then, for system policy component 𝑝𝑠 ,

since the actual data structure is parametric, we define the behavior

of the policy function on the erased state, i.e., the attacker can only

observe the system policy of observable labeled values.

Finally, we report the erasure of labeled values that hides the

unique identifier and value for non-observable labeled values. The

remaining cases (omitted) are defined as homomorphisms (e.g.,
𝜀
𝐴
(if 𝑒1 then 𝑒2 else 𝑒3) =if 𝜀𝐴 (𝑒1) then 𝜀𝐴 (𝑒2) else 𝜀𝐴 (𝑒3)).

3.2 Attacker knowledge

The attacker’s knowledge captures how much information the at-

tacker knows about the secret, i.e., the initial configuration. Fol-
lowing [5], we model the attacker’s knowledge using the attacker

exclusion knowledge set, i.e., the set of initial configurations that
the attacker can exclude given the observations associated with a

trace. Let ⟨Σ0 | 𝑒0⟩ be the initial configuration,
and 𝑜 = 𝜀

𝐴
(𝑡) the observations made by the attacker 𝐴 along

trace 𝑡 , then the exclusion knowledge is the set that contains all

the initial ⟨Σ | 𝑒⟩ that the attacker can exclude since they could not

have led to the observations [10].

Following Chong and Askarov [6], we consider two different

models of attacker knowledge, which we overview next. In the per-

fect recall model (§ 3.2.1), we consider an attacker that remembers

all the information that they have observed. In contrast, in the

forgetful model (§ 3.2.2), we consider an attacker that resets their

knowledge after every policy change. We remark that these models

are associated with different security guarantees, reflected in their

different notions of knowledge § 4.

3.2.1 Perfect recall. In the perfect recall model, attackers remember

all information they observed since the beginning of the computa-

tion. This is reflected in § 3.

Definition 3 (Exclusion knowledge). Given a trace 𝑡 , let 𝑜 = 𝜀
𝐴
(𝑡)

be the observations made by the attacker 𝐴. Then the exclusion

knowledge set for 𝐴 is:

𝑒𝑘
𝑝𝑟 𝑓

𝐴
(𝑜) = {𝑒′ | ¬∃𝑡 ′ .⟨Σ0 | 𝑒′⟩ ⇓ 𝑡 ′ with 𝜀𝐴 (𝑡

′) = 𝑜}

In dynamic security monitors, attackers can learn information

from whether the computation can perform one more step or has

terminated [6]. To account for these leaks, we define the progress

exclusion knowledge set [6] as the set of ⟨Σ | 𝑒⟩ that the attacker 𝐴
can exclude because could not have led to the current observation

𝑜 and can produce another observable configuration 𝛼 .

Definition 4 (Exclusion progress knowledge). Given a trace t and

𝑜 = 𝜀
𝐴
(𝑡) the exclusion progress knowledge of 𝐴 is defined as:

𝑒𝑘
+𝑝𝑟 𝑓
𝐴

(𝑜) = {𝑒′ |¬∃𝑡 ′, 𝛼 ′ .⟨Σ0 | 𝑒′⟩ ⇓ 𝑡 ′ · 𝛼 ′ with
𝜀𝐴 (𝑡

′) = 𝑜 ∧ 𝑜𝑏𝑠𝐴 (𝛼
′)}

Hence, we have that for ⟨Σ0 | 𝑒0⟩ ⇓ 𝑡 · 𝛼 with 𝑜𝑏𝑠
𝐴
(𝛼) the

increase in knowledge of 𝐴 observing 𝛼 is the difference between

the exclusion knowledge set and the exclusion progress knowledge

set.

3.2.2 Forgetful attacker knowledge. In the forgetful model, attack-

ers forget all information they observed from the beginning of the

computation until the last change in the policy. We call epoch the

piece of trace between two policy changes. Hence, policy events

partition the trace into epochs. At each step, only the observable

events of the current epoch affect the knowledge of the attacker.

Given the trace 𝑡 produced by the evaluation of the initial config-

uration, we define the function splitPolicy(𝑡) = (𝑡1, 𝑡2) that splits
the trace on the last policy change where 𝑡1 is the trace before the

last policy change and 𝑡2 is the last epoch.

Definition 5 (Exclusion knowledge). Given a trace t and assuming

that splitPolicy(𝑡) = (𝑡1, 𝑡2) with 𝑜 = 𝜀
𝐴
(𝑡2) the exclusion progress

knowledge of the attacker 𝐴 is defined as:

𝑒𝑘
𝑓 𝑟𝑔

𝐴
(𝑜) = {𝑒′ |¬∃𝑡 ′ .⟨Σ | 𝑒′⟩ ⇓ 𝑡 ′

∧ (𝑡 ′
1
, 𝑡 ′
2
) = 𝑠𝑝𝑙𝑖𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡 ′)

∧ 𝜀𝐴 (𝑡
′
2
) = 𝑜}

Hence, we have that for ⟨Σ0 | 𝑒0⟩ ⇓ 𝑡 · 𝛼 with 𝑜𝑏𝑠
𝐴
(𝛼) the

increase in knowledge of 𝐴 observing 𝛼 is the difference between

the exclusion knowledge set and the exclusion progress knowledge

set.

Similarly to Section 3.2.1, we introduce the exclusion progress

knowledge for the forgetful model.

Definition 6 (Exclusion progress knowledge). Given a trace 𝑡 and

𝑠𝑝𝑙𝑖𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡) = (𝑡1, 𝑡2) with 𝑜 = 𝜀
𝐴
(𝑡2) the increase in knowledge

Modular Implementation and Formalization of Dynamic Policies
Work In Progress

of 𝐴 is:

𝑒𝑘
+𝑓 𝑟𝑔
𝐴

(𝑜) = {𝑒′ |¬∃𝑡 ′, 𝛼 ′ .⟨Σ0 | 𝑒′⟩ ⇓ 𝑡 ′ · 𝛼 ′ with
(𝑡 ′
1
, 𝑡 ′
2
) = 𝑠𝑝𝑙𝑖𝑡𝑃𝑜𝑙𝑖𝑐𝑦 (𝑡 ′)

∧ 𝜀𝐴 (𝑡
′
2
) = 𝑜

∧ 𝑜𝑏𝑠𝐴 (𝛼
′)}

4 SECURITY

This section presents the analysis of the security for the identified

facets. In § 4.1 we define the structure of a security condition. In

§ 4.2 we present the security analysis of the time-transitive flows

and formalize the respective security conditions for the allowed

and forbidden cases. In § 4.3 we present the replaying flow facet

and provide the same analysis as for the time-transitive flows.

4.1 Security conditions

The goal of our security conditions is to constraint how the knowl-

edge changes during the execution in such a way that agrees with

the security policy (describing what the attacker is allowed to learn).

For this, we formalize all our conditions by bounding the increase in

knowledge of the attacker, i.e., the difference between the attacker’s

exclusion knowledge and the exclusion progress knowledge. In the

following, with an abuse of notation, we avoid writing the specific

type of attacker, i.e., perfect recall or forgetful, in the security con-

ditions and we just use 𝑒𝑘𝐴 (·) and 𝑒𝑘+𝐴 (·) to denote the attacker’s

exclusion knowledge and the exclusion progress knowledge, respec-

tively. Hence, given ⟨Σ | 𝑒⟩ ⇓ 𝑡 · 𝛼 where 𝛼 is the new observation,

and an attacker 𝐴 we want to define a bound B𝐴 (𝑡, 𝛼) such that

𝑒𝑘𝐴 (𝜀𝐴 (𝑡 · 𝛼))\𝑒𝑘
+
𝐴 (𝜀𝐴 (𝑡)) ⊆ B𝐴 (𝑡, 𝛼)

In all four security conditions that we study, the attacker 𝐴 is

allowed to exclude the set of expressions 𝑒’ that are not erasure-

equal to the initial expression 𝑒 under a current state Σ. This set of
expressions is defined below as the Input Release 𝐼𝐴 (𝑒, Σ).

Definition 7 (Input Release [5]). Given the initial configuration

⟨Σ0 | 𝑒0⟩, and a state Σ.

𝐼𝐴 (𝑒0, Σ) = {𝑒′ | 𝜀Σ𝐴 (𝑒0) ≠ 𝜀Σ𝐴 (𝑒
′)}

4.2 Time-transitive security

A flow is time-transitive if it moves information from a security

level 𝐴 to level 𝐶 via a third level 𝐵, while there is no moment in

time where the flow from𝐴 to𝐶 is directly enabled. In the following,

we give the intuition of this facet and its interpretations, and then

we define the security conditions for the allowed and forbidden

cases.

Intuition. Table 1 shows the two interpretations of time transitive

flows. The example on the left represents the context in which one

may want to allow the flow to permit the input to flow to the

database but only after being sanitized. Instead, one may forbid

this flow when a hospital is trying to share patient data after the

patient has left the hospital.

Allowed. To allow the attacker to learn time transitive informa-

tion, Buiras and van Delft [5] define a specific erasure function

multilevel erasure that is only used in Definition 8. Although their

1 ex = do
2 b <- label Bob "secret"
3 -- Bob -> Carla
4 c <- toLabeled Carla (do
5 unlabel b
6)
7 -- Bob -/> Carla
8 -- Carla -> Dave
9 d <- toLabeled Dave (do
10 unlabel c
11)
12 -- Carla -/> Dave
13 -- Dave -> Atk

Figure 6: Example showing that multi-level erasure in [5] is

wrong

𝜀𝐴↓
(𝑡 · ⟨Σ𝑛 | 𝑒𝑛⟩) =


𝜀
𝐴′
↓
(𝑡) · ⟨𝜀

𝐴↓
(Σ𝑛) | 𝜀Σ𝑛𝐴↓

(𝑒)⟩
if ∃𝑙 ′ ∈ 𝐴↓ .𝑜𝑏𝑠𝐴↓

(⟨Σ𝑛 | 𝑒𝑛⟩)
with 𝐴′

↓ = 𝐴↓ (𝐴↓, Σ𝑛)
𝜀
𝐴𝑛−1
↓

(𝑡) otherwise

𝜀𝐴↓
(Σ) = ⟨𝑙𝑠, 𝜀Σ𝐴↓

(𝑝𝑠), 𝑟𝑒𝑙, 𝜀Σ𝐴↓
(𝑠𝑖𝑑)⟩

𝜀Σ𝐴↓
(𝑠𝑖𝑑) =

{
(𝑙, 𝑖𝑥) : 𝜀Σ

𝐴↓
(𝑠𝑖𝑑) if ∃𝑙 ′ ∈ 𝐴↓ .lrt(Σ, 𝑙, 𝑙 ′)

𝜀Σ
𝐴↓

(𝑠𝑖𝑑) otherwise

𝜀Σ𝐴↓
(𝑝𝑠) s.t. ∀(𝑙, 𝑖), 𝑙 ′ ⇒ policy(𝜀𝐴↓

(Σ), 𝑙, 𝑖, 𝑙 ′) =
{

policy(Σ, 𝑙, 𝑖, 𝑙 ′) if 𝑙 ′ ∈ 𝐴↓
false otherwise

𝜀Σ𝐴↓
(LB 𝑙 𝑒 𝑖) =

{
LB 𝑙 𝜀Σ

𝐴↓
(𝑒) 𝑖 if ∃𝑙 ′ ∈ 𝐴↓ .policy(Σ, 𝑙, 𝑖, 𝑙 ′)

LB 𝑙 • • otherwise

Figure 7: Multi-level erasure for non-trivial cases

intuition is correct, their definition is not complete, as we show in

Figure 6.

Buiras and van Delft [5] define the multilevel erasure function

to represent the information collectively known by a set 𝐿 of labels

that the attacker can observe based on the policy, i.e., given a state

Σ then 𝐿 = {𝑙 | lrt(Σ, 𝑙, 𝐴)}. We observe that if the attacker is

allowed to learn from labels in 𝐿 it will also learn information

that was released to those labels. From Figure 6, we observe that

when the policy allows 𝐷𝑎𝑣𝑒 → 𝐴𝑡𝑘 the attacker is able to learn

𝑏 from 𝑑 . Their definition would not allow the attacker to learn

𝑏, because 𝐿 = {𝐷𝑎𝑣𝑒,𝐴𝑡𝑘}, but their implementation does not

consider this program insecure. We think that since we are allowing

time transitive flows, the attacker should be able to learn 𝑏 from

𝑑 . Hence, we adjust the multilevel erasure function to allow the

attacker to learn all time transitive information.

Our multilevel erasure function 𝜀
𝐴↓

(·) is reported in Figure 7.

We define 𝐴↓ as the down closure of the policy given by config-

uration n in trace 𝑡 for the attacker 𝐴: 𝐴↓ ({𝑙}, Σ) = {𝑙} ∪ {𝑙 ′ |
∃𝑙 ∈ {𝑙}.lrt(Σ, 𝑙, 𝑙 ′)}. In this way, we can expand this set by going

backward in the trace, allowing the attacker to learn information

that was released to the labels in the down closure of the policy.

Now we can instantiate relabeling release [5] to specify the infor-

mation that 𝐴 can exclude based on the multilevel erasure i.e., the
information that could have transitively flown to 𝐴.

Antonio Zegarelli, Niki Vazou, and Marco Guarnieri

Allowed Forbidden

1 -- NSA → Military
2 share Military nsaSecret
3 -- NSA ↛ Military
4 share Military nsaSecret

1 -- Card → Log
2 write Log cardNumber
3 -- Card ↛ Log
4 write Log cardNumber

Table 2: Examples of replaying flow

Definition 8 (Relabeling release). Given ⟨Σ | 𝑒⟩ ⇓ 𝑡 · ⟨Σ𝑛 | 𝑒𝑛⟩
with 𝑜𝑏𝑠𝐴 (⟨Σ𝑛 | 𝑒𝑛⟩), and 𝐴↓ (𝐴, Σ𝑛). Relabeling release 𝑅𝐴 (𝑡, 𝐴↓)
is defined as the set of inputs 𝑒’, released by relabeling on trace 𝑡 ,

that an attacker 𝐴 is able to exclude.

𝑅𝐴 (𝑡, 𝐴↓) = {𝑒′ |¬∃𝑡 ′, 𝛼 ′ .⟨Σ0 | 𝑒′⟩ ⇓ 𝑡 ′ · 𝛼 ′ with 𝑜𝑏𝑠𝐴 (𝛼
′)

∧ 𝜀𝐴↓
(𝑡) = 𝜀𝐴↓

(𝑡 ′)}

Definition 9 (Termination-insensitive security allowing TT flows).

The expression 𝑒 is secure against an attacker𝐴 if for all traces 𝑡 and

configurations 𝛼 such that ⟨Σ0 | 𝑒⟩ ⇓ 𝑡 · 𝛼 with 𝑜𝑏𝑠
𝐴
(𝛼), 𝛼 = ⟨Σ𝑛 |

𝑒𝑛⟩, the attacker’s increase in knowlegde is bounded by 𝐼𝐴 (𝑒, Σ𝑛)
and 𝑅𝐴 (𝑡, 𝐴↓):

𝑒𝑘𝐴 (𝜖𝐴 (𝑡 · 𝛼))\𝑒𝑘+𝐴 (𝜖𝐴 (𝑡)) ⊆ 𝐼𝐴 (𝑒, Σ𝑛) ∪ 𝑅𝐴 (𝑡, 𝐴↓)

Forbidden. By restricting the attacker’s increase in knowledge to

the input release only we obtain a security condition that disallows

time-transitive flows. This is because the attacker is only allowed

to exclude inputs that are not 𝐴-equal to the initial input using the

current policy state.

Definition 10 (Non Time-transitive termination-insensitive se-

curity). The expression 𝑒 is secure against an attacker 𝐴 if for

all traces 𝑡 and configurations 𝛼 such that ⟨Σ0 | 𝑒⟩ ⇓ 𝑡 · 𝛼 with

𝑜𝑏𝑠
𝐴
(𝛼), 𝛼 = ⟨Σ𝑛 | 𝑒𝑛⟩, the attacker’s increase in knowlegde is

bounded by 𝐼𝐴 (𝑒, Σ𝑛)
𝑒𝑘𝐴 (𝜖𝐴 (𝑡 · 𝛼))\𝑒𝑘+𝐴 (𝜖𝐴 (𝑡)) ⊆ 𝐼𝐴 (𝑒, Σ𝑛)

4.3 Replaying flows

A flow is said to be replaying when the release of information is

considered permanent and, therefore, can be securely repeated. In

the following, we give the intuition of this facet with its interpreta-

tions, and then we define the security conditions for the allowed

and forbidden cases.

Intuition. In Table 2 the example on the left shows a context

in which we want to allow this type of flow. If NSA shares some

information, permanently, with Military it makes sense to always

allow the same information to be shared again, since nothing new

is going to be learned.

Instead, the example on the right, shows that it may be insecure

when secret information is not released permanently, like a credit

card number is written to a log, then after the policy disallows the

flow from 𝐶𝑎𝑟𝑑 → 𝐿𝑜𝑔 at line 3, we want to forbid the program

that tries to write the value again.

Allowed. We observe that under a perfect recall attacker, the

structure of the security condition given in § 4 allows replaying

flows by default. Indeed, given the perfect recall nature of the

knoweldge, releasing again the same information does not result

in knowledge increases. That is,

𝑒𝑘
𝑝𝑟 𝑓

𝐴
(𝜀𝐴 (𝑡 · 𝛼))\𝑒𝑘

+𝑝𝑟 𝑓
𝐴

(𝜀𝐴 (𝑡)) = ∅
i.e., the attacker’s increase in knowledge is always empty under the

perfect recall model.

In the example from table 2, when the policy allows NSA to

flow toMilitary, the attacker on levelMilitary learns the value of 𝑛.

Hence, even if later the policy forbids the flow fromNSA toMilitary,
the second relabel is still safe since the attacker already knows the

value of 𝑛. Finally, also observe that the policy bound allowing for

Relabel Release also allows for replaying flows.

Definition 11 (Replaying termination-insensitive security). Com-

mand 𝑒 is secure against an attacker 𝐴 with replaying flows if for

all traces 𝑡 and configurations 𝛼 such that ⟨Σ0 | 𝑒⟩ ⇓ 𝑡 · 𝛼 with

𝑜𝑏𝑠
𝐴
(𝛼), 𝛼 = ⟨Σ𝑛 | 𝑒𝑛⟩, the attacker’s increase in knowlegde is

bounded by 𝐼𝐴 (𝑒, Σ𝑛) ∪ 𝑅𝐴 (𝑡, 𝐴↓).

𝑒𝑘
𝑝𝑟 𝑓

𝐴
(𝜀𝐴 (𝑡 ·𝛼))\𝑒𝑘

+𝑝𝑟 𝑓
𝐴

(𝜀𝐴 (𝑡)) ⊆ 𝐼𝐴 (𝑒, Σ𝑛) ⊆ 𝐼𝐴 (𝑒, Σ𝑛)∪𝑅𝐴 (𝑡, 𝐴↓)

Forbidden. If we want to disallow replaying flows we have to

consider the forgetful attacker. This approach is based on the fact

that a forgetful attacker perceives relearned information as if en-

countering it for the first time, thereby reflecting an actual increase

in knowledge. However, simply considering the forgetful attacker

is insufficient. Additionally, the policy bound must prevent the

attacker from learning such past information. Hence the security

condition that disallows replaying flows is defined as follows.

Definition 12 (Non replaying termination-insensitive security).

Command 𝑒 is secure against an attacker 𝐴 and does not allow

replaying flows if for all traces 𝑡 and configurations 𝛼 such that

⟨Σ0 | 𝑒⟩ ⇓ 𝑡 · 𝛼 with 𝑜𝑏𝑠
𝐴
(𝛼), 𝛼 = ⟨Σ𝑛 | 𝑒𝑛⟩, the attacker’s increase

in knowlegde is bounded by 𝐼𝐴 (𝑒, Σ𝑛).

𝑒𝑘
𝑓 𝑟𝑔

𝐴
(𝜀𝐴 (𝑡 · 𝛼))\𝑒𝑘

+𝑓 𝑟𝑔
𝐴

(𝜀𝐴 (𝑡)) ⊆ 𝐼𝐴 (𝑒, Σ𝑛).

5 INSTANCES

This section presents how the instances 𝐼 of the 𝜆𝐷𝑃
system are

defined to satisfy the security conditions of the different interpreta-

tions of the facets. In § 5.1 we present instances for time-transitive

flows and in § 5.2 we present the ones for replaying flows.

5.1 Time-Transitive Flows

Here we present the instances for the time-transitive flows inter-

pretations.

5.1.1 Allowed. Since SLIO allows explicitly time-transitive flows,

we use the instance given in § 2.2 for such system.

5.1.2 Forbidden. To instantiate a system without time-transitive

flows we use a map that associates the newly created labeled values

with the 𝑙𝑠 . This way we can track all the labeled values that were

in the computation so that we can avoid any time transitive flow.

To do this, we model 𝑝𝑠 as a map such that 𝑝𝑠 (𝑙, 𝑖) retrieves the
associated 𝑙𝑠 of the computation when the labeled vaue (𝑙 ,𝑖) was

created. Then 𝑝𝑠 [(𝑙, 𝑖) → 𝑙𝑠] represents the update of the map with

the new association.

Modular Implementation and Formalization of Dynamic Policies
Work In Progress

When we create a labeled value the opLabel(Σ, 𝑙, 𝑖) updates the
state by adding the association (𝑙, 𝑖) → 𝑙𝑠 to 𝑝𝑠 . Then, when un-

labeling, opUnlabel(Σ, 𝑙, 𝑖) returns a state in which 𝑙𝑠 contains

Σ.𝑝𝑠 (𝑙, 𝑖).
• opLabel(Σ, 𝑙, 𝑖) = Σ {𝑝𝑠 := 𝑝𝑠 [(𝑙, 𝑖) → 𝑙𝑠]}

• opUnlabel(Σ, 𝑙, 𝑖) = Σ {𝑙𝑠 := 𝑙𝑠 ∪ 𝑝𝑠 (𝑙, 𝑖) ∪ (𝑙, 𝑖)}

• opToLabRet(Σ, Σ0, 𝑙, 𝑖) = Σ

{
𝑙𝑠 := Σ0 .𝑙𝑠,

𝑝𝑠 := Σ.𝑝𝑠 [(𝑙, 𝑖) → 𝑙𝑠]

}
• guard(Σ, 𝑙 ′) = ∀(𝑙, 𝑖) ∈ 𝑙𝑠 .policy(Σ, 𝑙, 𝑖, 𝑙 ′),

• stateGuard(Σ, Σ′) = ∀(𝑙 ′, 𝑖′) ∈ 𝑙𝑠 .¬incUpperSet(Σ, Σ′, 𝑙 ′, 𝑖′)

• opState(Σ, 𝑒) = Σ {𝑟𝑒𝑙 := 𝑒}

• policy(Σ, 𝑙, 𝑖, 𝑙 ′) = lrt(Σ, 𝑙, 𝑙 ′) ∧
(𝑙𝑝 ,𝑖𝑝) ∈Σ.𝑝𝑠 (𝑙,𝑖)

policy(Σ, 𝑙𝑝 , 𝑖𝑝 , 𝑙 ′)

5.2 Replaying Flows

Here we present the instances for the replaying flows interpreta-

tions.

5.2.1 Allowed. To instantiate a system with replaying flows we

need to track releases so that we can allow in the future the same

release. After the first release, the policy should always allow the

following ones. To do this we model 𝑝𝑠 as a map from labeled values

to labels, representing for each labeled value the labels to which it

was released and hence to which can be replayed.

• opLabel(Σ, 𝑙, 𝑖) =
Σ {𝑝𝑠 := 𝑝𝑠 [∀(𝑙 ′, 𝑖′) ∈ 𝑙𝑠 .

(𝑙 ′, 𝑖′) → Σ.𝑝𝑠 (𝑙 ′, 𝑖′) ∪ 𝑙]}

• opUnlabel(Σ, 𝑙, 𝑖) = Σ

• opToLabRet(Σ, Σ0, 𝑙, 𝑖) = Σ


𝑙𝑠 := Σ0 .𝑙𝑠,

𝑝𝑠 := 𝑝𝑠 [∀(𝑙 ′, 𝑖′) ∈ 𝑙𝑠 .

(𝑙 ′, 𝑖′) → Σ.𝑝𝑠 (𝑙 ′, 𝑖′) ∪ 𝑙]


• guard(Σ, 𝑙 ′) =∀(𝑙, 𝑖) ∈ 𝑙𝑠 .policy(Σ, 𝑙, 𝑖, 𝑙 ′)

• stateGuard(Σ, Σ′) = ∀(𝑙 ′, 𝑖′) ∈ 𝑙𝑠 .¬incUpperSet(Σ, Σ′, 𝑙 ′, 𝑖′)

• opState(Σ, 𝑒) = Σ {𝑟𝑒𝑙 := 𝑒}

• policy(Σ, 𝑙, 𝑖, 𝑙 ′) = lrt(Σ, 𝑙, 𝑙 ′) ∨ 𝑙 ∈ Σ.𝑝𝑠 (𝑙 ′, 𝑖′)

5.2.2 Forbidden. We observe that the implementation that forbidds

time-transitive flows also forbidds replaying flows hence we use

the instance given in § 5.1.2 for such system.

6 PROOF & MECHANIZATION

This section presents the security proof of the system. In § 6.1, we

define the requirements that the interface 𝐼 needs to satisfy. Then,

§ 6.2 presents the security theorem, obtained by rewriting the secu-

rity condition with logical connectives, and a proof sketch. Finally,

§ 6.3 discusses the mechanization of the proof in LiquidHaskell.

The security theorem is instantiated with the security condition

with allowed time transitive flows defined in § 4.2.

6.1 Requirements

The interface 𝐼 is required to satisfy certain invariants to ensure

that the system behaves as expected and that such operations do

not reveal any information to the attacker.

Requirement 1. During the evaluation of the monadic expression

𝑒 in ⟨Σ | toLabeled 𝑙 𝑒⟩ the component Σ.𝑟𝑒𝑙 is not allowed to

change.

Requirement 2. For a state transition Σ2 = opUnlabel(Σ1, 𝑙, 𝑖),
the following hold:

• Σ2 .𝑠𝑖𝑑 = Σ1 .𝑠𝑖𝑑
• Σ2 .𝑟𝑒𝑙 = Σ1 .𝑟𝑒𝑙
• Σ2 .𝑙𝑠 ⊇ Σ1 .𝑙𝑠
• ∀(𝑙, 𝑖), 𝑙 ′ . policy(Σ2, 𝑙, 𝑖, 𝑙 ′) = policy(Σ1, 𝑙, 𝑖, 𝑙 ′)

Requirement 3. For a state transition Σ2 = opLabel(Σ1, 𝑙, 𝑖), the
following hold:

• Σ2 .𝑠𝑖𝑑 = Σ1 .𝑠𝑖𝑑 [𝑙 ↦→ Σ1 .𝑠𝑖𝑑 .𝑙 + 1]
• Σ2 .𝑟𝑒𝑙 = Σ1 .𝑟𝑒𝑙
• Σ2 .𝑙𝑠 = Σ1 .𝑙𝑠
• ∀(𝑙, 𝑖), 𝑙 ′ . policy(Σ2, 𝑙, 𝑖, 𝑙 ′) = policy(Σ1, 𝑙, 𝑖, 𝑙 ′)

Requirement 4. For a state transition Σ2 = opToLabRet(Σ1, Σ0, 𝑙, 𝑖),
the following hold:

• Σ2 .𝑠𝑖𝑑 = Σ1 .𝑠𝑖𝑑 [𝑙 ↦→ Σ1 .𝑠𝑖𝑑 .𝑙 + 1]
• Σ2 .𝑟𝑒𝑙 = Σ0 .𝑟𝑒𝑙
• Σ2 .𝑙𝑠 = Σ0 .𝑙𝑠
• ∀(𝑙, 𝑖), 𝑙 ′ . policy(Σ2, 𝑙, 𝑖, 𝑙 ′) = policy(Σ1, 𝑙, 𝑖, 𝑙 ′)

Definition 13. A step from C1 = ⟨Σ1 | 𝑒1⟩ to C2 = ⟨Σ2 | 𝑒2⟩ is said
to be at level (𝑙 , 𝑖) if the operation is performed on the labeled value

(𝑙 , 𝑖). This is denoted by C1
(𝑙,𝑖)
−−−→ C2 and occurs if the step involves

opLabel(Σ, 𝑙, 𝑖), opUnlabel(Σ, 𝑙, 𝑖), or opToLabRet(Σ, Σ0, 𝑙, 𝑖).

The following lemmas establish foundational properties of state

transformations and erasures under observation constraints. They

are crucial for simplifying the proof structure, as they provide

reusable, generalized cases of behavior under specific conditions.

These lemmas ensure that transformations maintain consistent era-

sures across steps, supporting the integrity of the system’s security

properties throughout the operational sequence.

Lemma 1. Consider a step from C1 = ⟨Σ1 | 𝑒1⟩
(𝑙,𝑖)
−−−→ C2 = ⟨Σ2 |

𝑒2⟩ observed by an attacker 𝐴, and suppose both 𝑜𝑏𝑠
𝐴
(C1) and

𝑜𝑏𝑠
𝐴
(C2) are true, with no change in the relevant system policies

(Σ1 .𝑟𝑒𝑙 = Σ2 .𝑟𝑒𝑙 and ¬policy(Σ1, 𝑙, 𝑖, 𝐴)). Then:
• 𝜀

𝐴
(Σ1 .𝑠𝑖𝑑) = 𝜀

𝐴
(Σ2 .𝑠𝑖𝑑)

• 𝜀
𝐴
(Σ1 .𝑝𝑠) = 𝜀

𝐴
(Σ2 .𝑝𝑠)

The proof follows from the requirements, demonstrating that un-

changed policies and identifiers ensure consistent erasures.

Lemma 2. Consider a step from C1 = ⟨Σ1 | 𝑒1⟩ −→ C2 = ⟨Σ2 | 𝑒2⟩
such that Σ1 .𝑟𝑒𝑙 = Σ2 .𝑟𝑒𝑙 and ¬𝑜𝑏𝑠

𝐴
(C2) holds. Then:

• 𝜀
𝐴
(Σ1 .𝑠𝑖𝑑) = 𝜀

𝐴
(Σ2 .𝑠𝑖𝑑)

• 𝜀
𝐴
(Σ1 .𝑝𝑠) = 𝜀

𝐴
(Σ2 .𝑝𝑠)

Antonio Zegarelli, Niki Vazou, and Marco Guarnieri

The proof leverages the requirements that ensure unchanged iden-

tifiers and system policies when transitions are unobservable to the

attacker.

Lemma 3. Consider a step, excluding E-RToLab, from C1 = ⟨Σ1 |
𝑒1⟩ −→ C2 = ⟨Σ2 | 𝑒2⟩ such that 𝑜𝑏𝑠

𝐴
(C2), then 𝑜𝑏𝑠𝐴 (C1) holds. The

proof goes by induction on the step derivation.

Lemma 4. Given two execution traces 𝑡𝑛 and 𝑡𝑚 with C𝑛 and

C𝑚 the last configurations of 𝑡𝑛 and 𝑡𝑚 respectively, such that

𝜀
𝐴
(𝑡𝑛) = 𝜀

𝐴
(𝑡𝑚) holds. If C𝑛 and C𝑚 are observable by 𝐴 then it

holds that: 𝜀
𝐴
(C𝑛) = 𝜀

𝐴
(C𝑚).

The proof goes by the definition of the erasure.

Lemma 5 (Determinism). Given 𝐼 ⊢ ⟨Σ1 | 𝑒1⟩ → ⟨Σ2 | 𝑒2⟩ and
𝐼 ⊢ ⟨Σ1 | 𝑒1⟩ → ⟨Σ3 | 𝑒3⟩ then ⟨Σ2 | 𝑒2⟩ = ⟨Σ3 | 𝑒3⟩ Proof by
structural induction on the rules.

Lemma 6 (Step Erasure). Given 𝐼 ⊢ ⟨Σ1 | 𝑒1⟩ → ⟨Σ2 | 𝑒2⟩ with
Σ1 .𝑟𝑒𝑙 = Σ2 .𝑟𝑒𝑙 then 𝐼 ⊢ 𝜀

𝐴
(⟨Σ1 | 𝑒1⟩) → 𝜀

𝐴
(⟨Σ2 | 𝑒2⟩) Proof by

structural induction on the rules.

Lemma 7 (Fixed State Lemma). Given two singe-step evaluations

𝐼 ⊢ ⟨Σ1 | 𝑒1⟩ → ⟨Σ2 | 𝑒2⟩ and 𝐼 ⊢ ⟨Σ′
1
| 𝑒′

1
⟩ → ⟨Σ′

2
| 𝑒′

2
⟩ with

Σ1 .𝑟𝑒𝑙 = Σ′
1
.𝑟𝑒𝑙 . For all levels 𝐴, if 𝜀

𝐴
(⟨Σ1 | 𝑒1⟩) = 𝜀

𝐴
(⟨Σ′

1
| 𝑒′

1
⟩)

then 𝜀
𝐴
(⟨Σ2 | 𝑒2⟩) = 𝜀

𝐴
(⟨Σ′

2
| 𝑒′

2
⟩).

Proof by the definition of 𝜀
𝐴
(·) we know that Σ1 .𝑟𝑒𝑙 = Σ′

1
.𝑟𝑒𝑙 and

that the operational rule taken is the same. By Lemma 6 (Step

Erasure) we know that 𝐼 ⊢ 𝜀
𝐴
(⟨Σ1 | 𝑒1⟩) → 𝜀

𝐴
(⟨Σ2 | 𝑒2⟩) and

𝐼 ⊢ 𝜀
𝐴
(⟨Σ′

1
| 𝑒′

1
⟩) → 𝜀

𝐴
(⟨Σ′

2
| 𝑒′

2
⟩). Then using Lemma 5 (Deter-

minism) on both steps we obtain 𝜀
𝐴
(⟨Σ2 | 𝑒2⟩) = 𝜀

𝐴
(⟨Σ′

2
| 𝑒′

2
⟩).

6.2 Security Theorem & Proof Sketch

Here, we present the security theorem of Definition 9 rewritten

using logical connectives, instead of set notation, and a proof sketch.

Since the bound is specific to the security condition, here we report

the one that allows time transitive flows.

Theorem 1. Given two execution traces 𝑡 and 𝑡 ′ starting from ⟨Σ0 |
𝑒⟩ and ⟨Σ0 | 𝑒′⟩ respectively, if both traces are erasure equivalent

under erasure for 𝐴 and are equivalent for the bound B then if we

take a step on both traces resulting in observable configurations C𝑛
and C𝑚 respectively, they are also equivalent under erasure for 𝐴.

∀ 𝑒, 𝑒′, 𝑡, 𝑡 ′ .

⟨Σ0 | 𝑒⟩ ⇓ 𝑡 · ⟨Σ𝑛 | 𝑒𝑛⟩
∧ 𝑜𝑏𝑠𝐴 (⟨Σ𝑛 | 𝑒𝑛⟩)
∧ ⟨Σ0 | 𝑒′⟩ ⇓ 𝑡 ′ · ⟨Σ𝑚 | 𝑒𝑚⟩
∧ 𝑜𝑏𝑠𝐴 (⟨Σ𝑚 | 𝑒𝑚⟩)
∧ 𝜀𝐴 (𝑡) = 𝜀𝐴 (𝑡

′)

∧ 𝜀Σ𝐴 (𝑒) = 𝜀Σ𝐴 (𝑒
′)

∧ 𝜀𝐴↓
(𝑡) = 𝜀𝐴↓

(𝑡 ′)
⇒ 𝜀𝐴 (⟨Σ𝑛 | 𝑒𝑛⟩) = 𝜀𝐴 (⟨Σ𝑚 | 𝑒𝑚⟩)

}
SetUp 𝑒𝑘+𝐴 (𝜖𝐴 (𝑡))}
B𝐴 (𝑡, 𝛼)}
𝑒𝑘𝐴 (𝜀𝐴 (𝑡 · 𝛼))

Proof. The proof proceeds by induction on the evaluation steps of

the execution traces:

• Base Cases:

–

Σ′ = opState(Σ, 𝑒) stateGuard(Σ, Σ′)
𝐼 ⊢ ⟨Σ | setRel 𝑒 ⟩ → ⟨Σ′ | ret () ⟩

E-SetRel:

From Lemma 3 and Lemma 4 we get 𝜀
𝐴
(⟨Σ𝑛−1 | setRel 𝑒⟩)

=𝜀
𝐴
(⟨Σ𝑚−1 | 𝑒𝑚−1⟩). By definition of erasure we derive

that 𝑒𝑚−1 = setRel 𝑒 . Hence in both configurations, the

new state is updated with the same user policy 𝑒 . Now we

have to show that also the states are erasure equal, from

now on 𝜀-equal. The components 𝑙𝑠 and 𝑟𝑒𝑙 are trivially

equal, so we have to show that the 𝑠𝑖𝑑 and 𝑝𝑠 are 𝜀-equal.

We know that changing 𝑟𝑒𝑙 allows information in 𝐴↓ to

be observable, so we have to show that this information is

𝜀-equal on both traces. This is obtained by the B𝐴 (𝑡, 𝛼) as-
sumption. Therefore 𝜀

𝐴
(Σ𝑛 .𝑠𝑖𝑑) = 𝜀𝐴 (Σ𝑚 .𝑠𝑖𝑑) and 𝜀

𝐴
(Σ𝑛 .𝑝𝑠)

= 𝜀
𝐴
(Σ𝑚 .𝑝𝑠).

Hence 𝜀
𝐴
(⟨Σ𝑛 | ret ()⟩) =𝜀

𝐴
(⟨Σ𝑚 | ret ()⟩).

–

𝐼 .guard(Σ𝑛−1, 𝑙) 𝐼 .stateGuard(Σ𝑛−1, Σ𝑛)
Σ𝑛 = 𝐼 .opToLabRet(Σ𝑛−1, Σ𝑖 , 𝑙, Σ𝑛−1 .𝑠𝑖𝑑.𝑙)
𝐼 ⊢⟨Σ𝑛−1 | toLabRet Σ𝑖 𝑙 (M 𝑒) ⟩

→ ⟨Σ𝑛 | ret (LB 𝑙 𝑒 (Σ𝑛−1 .𝑠𝑖𝑑.𝑙)) ⟩

E-RToLab :

We start by case splitting on the observability of the label 𝑙

by 𝐴.

∗ lrt(Σ𝑛, 𝑙, 𝐴): By guard(Σ𝑛−1, 𝑙) we know that ∀𝑙 ′ ∈
Σ𝑛−1 .𝑙𝑠 .lrt(Σ𝑛−1, 𝑙 ′, 𝑙), hence since lrt(Σ𝑛, 𝑙, 𝐴) and
using requirement 1 we have that ∀𝑙 ′ ∈ Σ𝑛−1 .𝑙𝑠 .
lrt(Σ𝑛−1, 𝑙 ′, 𝐴). Now we have to show that the last

step on m is indeed a E-RToLab. By 𝑒𝑘+
𝐴
(𝜖𝐴 (𝑡)) we

know that 𝜀
𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩) =𝜀𝐴 (⟨Σ 𝑗 | 𝐸 𝑗 ⟩).

We need to show that 𝑗 is indeed the last step in the

trace (𝑗 =𝑚 − 1), and we know by the following con-

figuration 𝑗 + 1 has to be observable.

By absurd 𝑗 ≠ 𝑚 − 1 then we know that there is a

step 𝑗 + 1 between 𝑗 and𝑚 − 1 that is observable by

𝐴, hence 𝑗 is not the last step in the trace ABSURD.

Hence 𝑗 = 𝑚 − 1 is the last step in the trace and we

know that 𝜀
𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩) =𝜀𝐴 (⟨Σ𝑚−1 | 𝑒𝑚−1⟩).

Now since they are 𝜀-equal they have the same shape,

suppose 𝑒𝑚−1 = toLabRet Σ𝑘 𝑙 ′ 𝑒′. By 𝜀 we have

that Σ𝑘 = Σ𝑖 and 𝑙 ’ = 𝑙 and 𝜀
𝐴
(𝑒′) = 𝜀

𝐴
(𝑒). Hence

we have that also 𝜀
𝐴
(⟨Σ𝑛 | ret (LB 𝑙 𝑒 Σ.𝑠𝑖𝑑)⟩) =

𝜀
𝐴
(⟨Σ𝑚 | ret (LB 𝑙 𝑒′ Σ.𝑠𝑖𝑑)⟩).

∗ ¬lrt(Σ𝑛, 𝑙, 𝐴): in this case we cannot directly derive

that the previous configuration was observable, it

could also be not observable. Hence we case split the

analysis on that.

· 𝑜𝑏𝑠
𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩): in this case the proof is

similar to the previous case.

· ¬𝑜𝑏𝑠
𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩): in this case we need to

show that the last step on 𝑡 ’ is indeed a E-RToLab.

First we prove by absurd that ¬𝑜𝑏𝑠
𝐴
(C𝑚−1): sup-

pose that 𝑜𝑏𝑠
𝐴
(C𝑚−1), we know by 𝑒𝑘+

𝐴
(𝜖𝐴 (𝑡))

that exists an 𝑖 in 𝑡𝑛−1 s.t. 𝜀
𝐴
(C𝑖) = 𝜀

𝐴
(C𝑚−1).

Then since we know that 𝑜𝑏𝑠
𝐴
(C𝑚) also C𝑖+1

must be observable. Hence C𝑖 is not the last

Modular Implementation and Formalization of Dynamic Policies
Work In Progress

step in the traceABSURD. Hence ¬𝑜𝑏𝑠
𝐴
(C𝑚−1).

Now by we know that the only way to step from

a non-observable configuration to an observable

one is with E-RToLab. Hence we know that the

last step on m is indeed a E-RToLab.

Since𝑜𝑏𝑠
𝐴
(C𝑛) and𝑜𝑏𝑠𝐴 (C𝑚)we know that both

traces entered in a E-ToLab step at some point in

the trace, say 𝑖 and 𝑗 respectively. By 𝑒𝑘+
𝐴
(𝜖𝐴 (𝑡))

we know that 𝜀
𝐴
(C𝑖) = 𝜀

𝐴
(C𝑗). Now 𝜀

𝐴
(C𝑖) =

toLabeled 𝑙 • and 𝜀
𝐴
(C𝑗) = toLabeled 𝑙 ′ • hence

𝑙 = 𝑙 ’. Now we need also to show that the state

components along the E-ToLab evaluation are

also 𝜀-equal. We know that the semantics doesn’t

allow the E-SetRel operation in the innermonad,

thus we know that in both cases the 𝑟𝑒𝑙 compo-

nent stays the same. Now we can use the re-

quirements to derive that the state components

are also 𝜀-equal to the last observable configura-

tion between C𝑖 and C𝑚 , say C𝑘 . Since 𝑜𝑏𝑠𝐴 (C𝑘)
there exists a C𝑝 between C𝑗 and C𝑚 s.t. 𝜀

𝐴
(C𝑝)

= 𝜀
𝐴
(C𝑘). Now we have that 𝜀

𝐴
(Σ𝑘) = 𝜀

𝐴
(Σ𝑛)

and 𝜀
𝐴
(Σ𝑝) = 𝜀

𝐴
(Σ𝑚) hence from this we de-

rive 𝜀
𝐴
(⟨Σ𝑛 | ret (LB 𝑙 𝑒 Σ.𝑠𝑖𝑑)⟩) = 𝜀

𝐴
(⟨Σ𝑚 |

ret (LB 𝑙 𝑒′ Σ.𝑠𝑖𝑑)⟩), since the return value is

erased to LB 𝑙 • •.
∗ All other cases: proved using Lemma 3, Lemma 4

and Lemma 7.

• Inductive Cases i.e, E-Cntx:

–

𝐼 ⊢ ⟨Σ𝑛−1 | 𝑒𝑛−1 ⟩ → ⟨Σ𝑛 | 𝑒𝑛 ⟩
𝐼 ⊢ ⟨Σ𝑛−1 | 𝑒𝑛−1 »= 𝑒𝑓 ⟩ → ⟨Σ𝑛 | 𝑒𝑛 »= 𝑒𝑓 ⟩

E-Bind:

This is the most interesting case since it is here that change

in the state has effects on the erasure of the whole expres-

sion.

Hence we need to case analyze the evaluation of 𝑒𝑛−1 and
𝑒′
𝑛−1. We know by 𝜀

𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩) =𝜀𝐴 (⟨Σ𝑚−1 | 𝑒𝑚−1⟩)

and rule induction that 𝜀
𝐴
(⟨Σ′𝑛 | 𝑒′𝑛⟩) =𝜀𝐴 (⟨Σ

′
𝑚 | 𝑒′𝑚⟩).

Hence we need to show that 𝜀
𝐴
(⟨Σ′𝑛 | 𝑒 𝑓𝑛 ⟩) =𝜀𝐴 (⟨Σ

′
𝑚 | 𝑒 𝑓𝑚⟩).

∗ Case 𝑒𝑛−1 = setRel 𝑠𝑡 : The new state now allows

information in 𝐴𝑠𝑡
↓ to be observable by 𝐴, thus we

need to show that they are 𝜖 − 𝑒𝑞𝑢𝑎𝑙 .

By B𝐴 (𝑡, 𝛼) we know that anything that could be

revealed is 𝜖 − 𝑒𝑞𝑢𝑎𝑙 .

Hence 𝜀
𝐴
(⟨Σ𝑛 | 𝑒𝑛⟩) = 𝜀

𝐴
(⟨Σ𝑚 | 𝑒𝑚⟩).

∗ Case 𝑒𝑛−1 = toLabRet Σ𝑖 𝑙 𝑒: we use the induction
hypothesis and proceed as in the base case.

∗ All other cases: proved by rule induction and Lemma 7.

– All other cases: in the other cases 𝑝𝑠 remains the same.

Hence 𝑜𝑏𝑠
𝐴
(⟨Σ𝑛 | 𝑒𝑛⟩) implies 𝑜𝑏𝑠

𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩) and

𝑜𝑏𝑠
𝐴
(⟨Σ𝑚 | 𝑒𝑚⟩) implies 𝑜𝑏𝑠

𝐴
(⟨Σ𝑚−1 | 𝑒𝑚−1⟩). Then by

𝑒𝑘+
𝐴
(𝜖𝐴 (𝑡)) we derive 𝜀

𝐴
(⟨Σ𝑛−1 | 𝑒𝑛−1⟩) = 𝜀

𝐴
(⟨Σ𝑚−1 |

𝑒𝑚−1⟩). This and Lemma 7 (Fixed State Lemma) give us

𝜀
𝐴
(⟨Σ𝑛 | 𝑒𝑛⟩) = 𝜀

𝐴
(⟨Σ𝑚 | 𝑒𝑚⟩).

1 data State l ps rel = St
2 { lset :: Lset l
3 , sid :: SId l
4 , ps :: ps
5 , rel :: rel
6 }
7

8 data Expr l ps rel = ELabel (Expr l ps rel) | ELab l
9 | ERet (Expr l ps rel) | ...
10

11 data Program l ps rel = Pg
12 { pstate :: State l ps rel
13 , pExpr :: Expr l ps rel
14 }

Figure 8: Syntax in Liquid Haskell.

1 data Step l ps rel where
2 {-@ SLabel :: i:IFC l ps rel -> st:State l ps rel
3 -> l:{eGuard i st l} -> Expr l ps rel
4 -> Step i (Pg st (ELabel (ELab l) e))
5 (Pg st (ERet (ELB (ELab l) e))) @-}
6 SLabel :: IFC l ps rel -> State l ps rel -> l
7 -> Expr l ps rel -> Step l ps rel

Figure 9: Operational semantics in Liquid Haskell

1 security :: i:IFC l ps rel -> atk:l
2 -> p0:Program l ps rel
3 -> p0':{Program l ps rel | eqState p0 p0'}
4 -> pn1:Program l ps rel -> pm1:Program l ps rel
5 -> pn:{Program l ps rel | isObs i atk pn }
6 -> pm:{Program l ps rel | isObs i atk pm}
7 -> tn1:Eval i p0 pn1 -> tm1:Eval i p0' pm1
8 -> sn:Step i pn1 pn -> sm:Step i pm1 pm
9 -> LowEquivTrace i atk p0 p0' pn1 pm1 tn1 tm1
10 -> InputRelease i atk (pstate pn) (pExpr p0) (pExpr p0')
11 -> SecurityBound i atk p0 p0' pn1 pm1 tn1 tm1
12 -> LowEquivProgram i atk pn pm

Figure 10: Security Condition in Liquid Haskell

6.3 Mechanization

We use LiquidHaskell [11] to mechanize the security proof of the

system. LiquidHaskell is a refinement type checker for Haskell

that uses SMT solvers to verify properties of Haskell programs.

Refinement types are written as Haskell types with decidable logical

predicates, e.g., { v:Int | v > 0 } is the type of positive integers.
The expressions of 𝜆𝐷𝑃

are embedded as a data type shown in

Figure 8. The operational semantics, an example rule of which is

shown in Figure 9, is embedded as a data proposition [3], Liquid

Haskell’s mechanism for defining inductive predicates. We use the

refinement types to express the preconditions and postconditions

of the operational semantics. Finally, the security theorem is mech-

anized as a function in LiquidHaskell, as shown in Figure 10. The

proof is still a work in progress, with the main challenge being that

because of the complexity of the property the proof development is

tedious and requires time to complete. Currently, we have ∼ 7000

lines of code.

7 IMPLEMENTATION

We implemented 𝐷𝑦𝑝𝐿𝐼𝑂 as a State monad in Haskell using type-

classes that directly reflect the formalization and allow for the

Antonio Zegarelli, Niki Vazou, and Marco Guarnieri

1 type Id = Int
2 data Labeled l a = LB l a Id
3 type IFC l st ps rel m = (MonadState st m, IFCI l st ps rel)
4

5 label :: IFC l st ps rel m => l -> a -> m (Labeled l a)
6 label l v = do
7 st <- get
8 unless (guard l st) (throwError "label check failed1")
9 put (incId l opLabel l (getId l st) st)
10 return LB l v (getId l st)
11 unlabel :: IFC l st ps rel m => Labeled l a -> m a
12 unlabel (LB l e i) = do
13 st <- get
14 put $ opUnlabel l i (modifyLSet' (insert (l,i)) st)
15 return e
16 toLabeled :: IFC l st ps rel m => l -> m a -> m (Labeled l a)
17 toLabeled l m = do
18 st0 <- get
19 e <- m
20 toLabeledRet st0 l e
21 setRelation :: IFC l st ps rel m => rel -> m ()
22 setRelation rel = do
23 st <- get
24 let st' = opState st rel
25 if stateGuard st st' then throwError "state guard fail"
26 else put st'
27 getRelation :: IFC l st ps rel m => m rel
28 getRelation = getRelation' <$> get
29 -- Hidden
30 toLabRet :: IFC l st ps rel m => st -> l -> a -> m (Labeled l a)
31 toLabRet st0 l e = do
32 st <- get
33 unless (guard l st) (throwError "label check failed")
34 put (incId l opToLabRet st l (getId l st) st0)
35 return LB l e (getId l st)

Figure 11: 𝐷𝑦𝑝𝐿𝐼𝑂 API

1 class Relation l rel where
2 lrt :: rel -> l -> l -> Bool
3

4 class Relation l rel => IFCI l st ps rel where
5 guard :: l -> st -> Bool
6 stateGuard :: st -> st -> Bool
7 opState :: st -> rel -> st
8 opLabel :: l -> Id -> st -> st
9 opUnlabel :: l -> Id -> st -> st
10 opToLabeledRet :: st -> l -> Id -> st -> st
11 policy :: l -> Id -> l -> st -> l

Figure 12: IFC inferface typeclass

different implementations. Figure 11 shows the API of 𝐷𝑦𝑝𝐿𝐼𝑂 ,

with direct translation of the rules from the formalization.

Then, we show the Relation and IFCI typeclasses in Figure 12

that represent the relation 𝑅 and abstract interface 𝐼 respectively.

Finally, our implementation provides the instances for the 4 systems

presented in Section 5.

8 RELATEDWORK

In this section, we discuss relatedwork on Information FlowControl

and dynamic policies. 𝐷𝑦𝑝𝐿𝐼𝑂 is inspired by SLIO [5] an Haskell

IFC enforcement mechanism for dynamic polcies and [4] a survey

where different security conditions are discussed with respect to

facets of dynamic policies. The base for knowledge based IFC is

[2, 6] where they introduce the concept of attacker knowledge, i.e.

the set of possible secret inputs as functions of publicly observable

outputs, and the knowledge based security condition that only

allows the attacker to learn information in accordance to the current

policy. In [6] they also observe that different types of attackers

model different types of security. This is further explored in [1]

where they also analyze the relations of different attackers with

the facets identified in [4]. They propose a formalization with a

while language with input channels, and SMT-based verification.

Another work on dynamic policies is [7] where they propose a

general-purpose security condition for an imperative language. In

[10] they extend the framework from [6] to account for progress-

insensitive security.

9 CONCLUSION & FUTUREWORK

We presented a modular framework for IFC with dynamic policies,

that can be instantiated with different interpretations of security.

Concretely, we formalized the core language of an enforcement

mechanism that is parametric with respect to the information flow

instance, such that can enforce the four facets of time-transitive flow,

non-replaying, replaying, and non-time-transitive flow.We encoded

the security conditions for each of these facets, and initiated the

mechanization of the security proof in Liquid Haskell.

In the immediate future, we plan to complete the mechanization

of the security proof for the time transitive flow facet and next,

modify the mechanization to consider the other three facets, thus

testing our claim that the system is modular with respect to the

facets and that the main proof can be reused for the different facets.

Once this framework is complete, we plan to explore the compo-

sition and combination of the different facets as well as extend

the framework with more language features, such as exceptions,

references, and concurrency.

REFERENCES

[1] A. M. Ahmadian and M. Balliu. 2022. Dynamic Policies Revisited. In 2022 IEEE
7th European Symposium on Security and Privacy (EuroS&P). IEEE Computer

Society, Los Alamitos, CA, USA, 448–466. https://doi.org/10.1109/EuroSP53844.

2022.00035

[2] Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declassifi-

cation, Encryption and Key Release Policies. In 2007 IEEE Symposium on Security
and Privacy (SP ’07). 207–221. https://doi.org/10.1109/SP.2007.22

[3] Michael H. Borkowski, Niki Vazou, and Ranjit Jhala. 2024. Mechanizing Refine-

ment Types. Proc. ACM Program. Lang. 8, POPL, Article 70 (jan 2024), 30 pages.

https://doi.org/10.1145/3632912

[4] N. Broberg, B. van Delft, and D. Sands. 2015. The Anatomy and Facets of Dynamic

Policies. In 2015 IEEE 28th Computer Security Foundations Symposium (CSF). IEEE
Computer Society, Los Alamitos, CA, USA, 122–136. https://doi.org/10.1109/

CSF.2015.16

[5] Pablo Buiras and Bart van Delft. 2015. Dynamic Enforcement of Dynamic Policies.

In Proceedings of the 10th ACMWorkshop on Programming Languages and Analysis
for Security (Prague, Czech Republic) (PLAS’15). Association for Computing

Machinery, New York, NY, USA, 28–41. https://doi.org/10.1145/2786558.2786563

[6] S. Chong and A. Askarov. 2012. Learning is Change in Knowledge: Knowledge-

Based Security for Dynamic Policies. In 2012 IEEE 25th Computer Security Foun-
dations Symposium. IEEE Computer Society, Los Alamitos, CA, USA, 308–322.

https://doi.org/10.1109/CSF.2012.31

[7] P. Li and D. Zhang. 2022. Towards a General-Purpose Dynamic Information

Flow Policy. In 2022 2022 IEEE 35th Computer Security Foundations Symposium
(CSF) (CSF). IEEE Computer Society, Los Alamitos, CA, USA, 260–275. https:

//doi.org/10.1109/CSF54842.2022.9919639

[8] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011.

Flexible dynamic information flow control in Haskell. SIGPLAN Not. 46, 12 (sep
2011), 95–106. https://doi.org/10.1145/2096148.2034688

[9] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011.

Flexible dynamic information flow control in Haskell. In Proceedings of the
4th ACM Symposium on Haskell (Tokyo, Japan) (Haskell ’11). Association for

Computing Machinery, New York, NY, USA, 95–106. https://doi.org/10.1145/

2034675.2034688

https://doi.org/10.1109/EuroSP53844.2022.00035
https://doi.org/10.1109/EuroSP53844.2022.00035
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1145/3632912
https://doi.org/10.1109/CSF.2015.16
https://doi.org/10.1109/CSF.2015.16
https://doi.org/10.1145/2786558.2786563
https://doi.org/10.1109/CSF.2012.31
https://doi.org/10.1109/CSF54842.2022.9919639
https://doi.org/10.1109/CSF54842.2022.9919639
https://doi.org/10.1145/2096148.2034688
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1145/2034675.2034688

Modular Implementation and Formalization of Dynamic Policies
Work In Progress

[10] Bart van Delft, Sebastian Hunt, and David Sands. 2015. Very Static Enforcement

of Dynamic Policies. CoRR abs/1501.02633 (2015). arXiv:1501.02633 http://arxiv.

org/abs/1501.02633

[11] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-

Jones. 2014. Refinement Types for Haskell. In Proceedings of the 19th ACM
SIGPLAN International Conference on Functional Programming (Gothenburg, Swe-
den) (ICFP ’14). Association for Computing Machinery, New York, NY, USA,

269–282. https://doi.org/10.1145/2628136.2628161

https://arxiv.org/abs/1501.02633
http://arxiv.org/abs/1501.02633
http://arxiv.org/abs/1501.02633
https://doi.org/10.1145/2628136.2628161

	Abstract
	1 Introduction
	2 Formalization
	2.1 Syntax
	2.2 Semantics

	3 Attacker Model
	3.1 Observation power
	3.2 Attacker knowledge

	4 Security
	4.1 Security conditions
	4.2 Time-transitive security
	4.3 Replaying flows

	5 Instances
	5.1 Time-Transitive Flows
	5.2 Replaying Flows

	6 Proof & Mechanization
	6.1 Requirements
	6.2 Security Theorem & Proof Sketch
	6.3 Mechanization

	7 Implementation
	8 Related Work
	9 Conclusion & Future Work
	References

