
Mechanizing Proofs of Security Through
Indirection in the Real/Ideal Paradigm

Alley Stoughton

2025 Workshop on Foundations of Computer Security (FCS)
June 16, 2025 — Santa Cruz, CA, USA

Boston University

Work in collaboration with Arthur Azevedo de Amorim,
Marco Gaboardi and Jared Pincus

FCS 2025
Alley Stoughton

• The real/ideal paradigm is a powerful means of defining the security of
protocols.

• Its origins are in cryptography, where:
• security holds only with high probability, and
• the need for relying on trusted computing bases (TCBs) is minimized.

Real/Ideal Paradigm

2

FCS 2025
Alley Stoughton

• In my and my co-authors 2014 Programming Languages and Analysis for
Security (PLAS) paper “You Sank My Battleship! A Case Study in Secure
Programming”, we proposed using the real/ideal paradigm for defining
security

• when protocol parties rely on a TCB, and
• security is absolute and is enforced using PL mechanisms: data

abstraction and references.
• We considered two implementations of the two-party game Battleship,

where one party was honest and the other possibly malicious.
• They used Concurrent Haskell/LIO and Concurrent ML, respectively.

• The focus was on auditing; no proofs were given.

Real/Ideal Paradigm With PL Enforcement

3

FCS 2025
Alley Stoughton

Real/Ideal Paradigm With PL Enforcement

4

FCS 2025
Alley Stoughton

Real/Ideal Paradigm With PL Enforcement

4

TCB

H M

Adv

b

real game

real
protocol

H = honest party
M = malicious party

FCS 2025
Alley Stoughton

Real/Ideal Paradigm With PL Enforcement

4

TCB

H M

Adv

b

real game

real
protocol

TCB

H M

Adv

C

b

ideal game

ideal
protocol

simulator

H = honest party
M = malicious party

C = core
red = modified
for simulator

FCS 2025
Alley Stoughton

• The proof assistant EasyCrypt is well suited for mechanizing proofs of
real/ideal paradigm security.

• Procedure-based module language for defining games.
• Four logics: ambient logic for ordinary mathematics, Hoare logic,

probabilistic Hoare logic (pHL), probabilistic relational Hoare logic
(pRHL).

• Unfortunately, EasyCrypt lacks support for data abstraction, references
and concurrency — although there is a workaround for the lack of
concurrency.

• See, however, the next talk, by Jared Pincus!

EasyCrypt Proofs for Real/Ideal PL-based Security

5

FCS 2025
Alley Stoughton

• However, there is an alternative approach to obtaining absolute security
via a TCB: security through indirection.

• An example is the way file descriptors work in operating systems:
• The OS maintains a separate map for each process, mapping file

descriptors (small natural numbers) to files.
• A process can perform file operations via this indirection.
• A process can send a file descriptor to another process, giving the

other process a new file descriptor in its map, pointing to the same file
as did the original descriptor in the sending process’s map.

Security Through Indirection

6

FCS 2025
Alley Stoughton

• In EasyCrypt, we have completed a case study applying security
through indirection to a two party boolean guessing game protocol.

• The adversary assigns roles to the two protocol parties—one is the
“chooser” and one is the “guesser”.

• Playing the role of the parties’ clients, it then tells the chooser what its
choice, b1, is, and the guesser what its guess, b2, is.

• If b1 = b2, the guesser wins; otherwise the chooser wins.

Guessing Game Case Study

7

FCS 2025
Alley Stoughton

• TCB has a physical memory and party-indexed virtual memories.
• Physical memory maps physical addresses to two kinds of immutable

objects, unforgeable keys and cells:
• a key is a natural number (allocated in increasing order);
• a cell consists of a boolean value and the key needed to unlock it.

• TCB maintains virtual memories for each party, mapping virtual
addresses to physical ones.

 type party = [Honest | Malicious]. type addr = int.

TCB: Physical and Party-indexed Memories

8

FCS 2025
Alley Stoughton

module type MEMORY = {
 proc init() : unit
 proc trans_virt_addr(pty : party, addr : addr) : addr option
 proc create_key(pty : party) : addr
 proc is_key(pty : party, key_addr : addr) : bool
 proc create_cell(pty : party, key_addr : addr, b : bool)
 : addr option
 proc is_cell(pty : party, cell_addr : addr) : bool
 proc unlock_cell(pty : party, cell_addr : addr, key_addr : addr)
 : addr option
 proc contents_cell(pty : party, cell_addr : addr) : bool option }.

module Memory : MEMORY = { … }.

TCB: Physical and Party-indexed Memories

9

FCS 2025
Alley Stoughton

• Each party has its own view of Memory, in which the acting party is
implicit.
module type PARTY_MEMORY = {
 proc trans_virt_addr(addr : addr) : addr option
 proc create_key() : addr
 proc is_key(key_addr : addr) : bool
 proc create_cell(key_addr : addr, b : bool)
 : addr option
 proc is_cell(cell_addr : addr) : bool
 proc unlock_cell(cell_addr : addr, key_addr : addr)
 : addr option
 proc contents_cell(cell_addr : addr) : bool option }.

TCB: Physical and Party-indexed Memories

10

FCS 2025
Alley Stoughton

• The invariant on Memory says, among other requirements, that:

• each key in the physical memory is unique;
• the key of a cell in the physical memory is also in the physical memory;
• all keys in the physical memory are less than the next available key.

• We prove various lemmas about the procedures of Memory, including
that all of its procedures preserve this invariant.

• These lemmas can be reused for any two-party protocol using Memory.

• ~970 lines of definitions, lemma statements and proofs.

TCB: Physical and Party-indexed Memories

11

FCS 2025
Alley Stoughton

type msg = [
 | Result of bool | Choice of bool
 | Guess of bool | CellAddr of addr
 | KeyAddr of addr | Error
 | Int of int].

module type PROTOCOL = {
 proc init(chooser : party) : unit
 proc from_adv(party : party, msg : msg) : bool
 proc to_adv(party : party) : msg option
 proc queue(party : party) : unit
 proc deliver(party : party) : unit }.

Protocols

12

FCS 2025
Alley Stoughton

module type ADV (Proto : PROTOCOL) = {
 proc chooser() : party { }
 proc distinguish() : bool {Proto.from_adv, Proto.to_adv, Proto.queue, Proto.deliver}
}.

module Exper (Prot : PROTOCOL, Adv : ADV) = {
 module A = Adv(Prot)
 proc main() : bool = {
 var b : bool; var chooser : party;
 chooser <@ A.chooser();
 Prot.init(chooser);
 b <@ A.distinguish();
 return b;
 }
}.

Adversaries and Experiments

13

FCS 2025
Alley Stoughton

module type PARTY (PM : PARTY_MEMORY) = {
 proc init(chooser : bool) : unit { } (* can't use PM *)
 proc from_adv(msg : msg) : bool
 proc to_adv() : msg option
 proc from_other(msg : msg) : bool
 proc to_other() : msg option
}.
module RealProtocol (Honest : PARTY, Malicious : PARTY) : PROTOCOL = {
 module H = Honest(HonestMemory.PartyMemory)
 module M = Malicious(MaliciousMemory.PartyMemory)
 var to_malicious_queue, to_honest_queue : msg list
 ...
}.
module (Honest : PARTY) (PM : PARTY_MEMORY) = { ... }.

Parties, Real Protocol and Honest Party

14

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

physical

chooser guesser

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

0

0

physical

chooser

0

0

guesser

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

0

0

1

0/b/locked

physical

chooser

0

0

1

1

guesser

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

0

0

1

0/b/locked

physical

chooser

0

0

1

1

guesser

0

1

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

0

0

1

0/b/locked

physical

chooser

0

0

1

1

guesser

0

1

1

0

FCS 2025
Alley Stoughton

Real Protocol Operation if Both Parties are Honest

15

0

0

1

0/b/locked

2

0/b/unlocked

physical

chooser

0

0

1

1

guesser

0

1

1

0

2

2

FCS 2025
Alley Stoughton

• ~240 lines of definitions.
• Could be adapted to another two party protocol using same TCB.

Parties, Real Protocol and Honest Party

16

FCS 2025
Alley Stoughton

• For correctness, we let both parties be honest.
• We define an adversary that assigns the parties their roles, gives them

their choice/guess, gives them the fuel to execute and communicate,
and checks that their reported won/loss results are correct.

• We then prove that running the corresponding experiment is guaranteed
to return true.

• ~680 lines of definitions, lemma statements and proofs.

Correctness

17

FCS 2025
Alley Stoughton

Security

18

TCB

H M

Adv

b

real game

real
protocol

TCB

H M

Adv

C

b

ideal game

ideal
protocol

simulator

H = honest party
M = malicious party

C = core
red = modified
for simulator

FCS 2025
Alley Stoughton

• When the honest party is the chooser, the core (C) of IP holds its choice
until M in the simulator commits to its guess.

• When the honest party is the guesser, C holds its guess until M in the
simulator commits to its choice.

• Thus, from the honest party’s perspective, the game is fair.

Ideal Protocol Logic

19

FCS 2025
Alley Stoughton

type sim_honest_output = [
 SHO_Nothing | SHO_Choice of bool | SHO_Guess of bool | SHO_OK | SHO_Error].

module type SIMULATOR = {
 proc init(chooser : party) : unit
 proc honest_start() : unit
 proc honest_choice(choice : bool) : unit
 proc honest_guess(guess : bool) : unit
 proc honest_queue() : sim_honest_output
 proc honest_deliver() : sim_honest_output
 proc malicious_from_adv(msg : msg) : bool
 proc malicious_to_adv() : msg option
 proc malicious_queue() : unit
 proc malicious_deliver() : unit }.

Simulator Module Type

20

FCS 2025
Alley Stoughton

module IdealProtocol (Sim : SIMULATOR) : PROTOCOL = { ... }

module Simulator (Malicious : PARTY) : SIMULATOR = { ... }

Ideal Protocol and Simulator

21

FCS 2025
Alley Stoughton

Simulator: Honest Party is Chooser

22

FCS 2025
Alley Stoughton

• When H in the simulator needs to send the virtual address of a cell to M,
it hasn’t yet learned its choice from C, and so doesn’t yet know what the
cell’s boolean should be.

Simulator: Honest Party is Chooser

22

FCS 2025
Alley Stoughton

• When H in the simulator needs to send the virtual address of a cell to M,
it hasn’t yet learned its choice from C, and so doesn’t yet know what the
cell’s boolean should be.

• Instead it uses a new cell with value true.

Simulator: Honest Party is Chooser

22

FCS 2025
Alley Stoughton

• When H in the simulator needs to send the virtual address of a cell to M,
it hasn’t yet learned its choice from C, and so doesn’t yet know what the
cell’s boolean should be.

• Instead it uses a new cell with value true.
• Once M sends its guess to H, H returns this to C, which replies with the

choice.

Simulator: Honest Party is Chooser

22

FCS 2025
Alley Stoughton

• When H in the simulator needs to send the virtual address of a cell to M,
it hasn’t yet learned its choice from C, and so doesn’t yet know what the
cell’s boolean should be.

• Instead it uses a new cell with value true.
• Once M sends its guess to H, H returns this to C, which replies with the

choice.
• H is then able to use a special feature of TCB to destructively patch the

choice into the cell that M already has the virtual address of.

Simulator: Honest Party is Chooser

22

FCS 2025
Alley Stoughton

• When H in the simulator needs to send the virtual address of a cell to M,
it hasn’t yet learned its choice from C, and so doesn’t yet know what the
cell’s boolean should be.

• Instead it uses a new cell with value true.
• Once M sends its guess to H, H returns this to C, which replies with the

choice.
• H is then able to use a special feature of TCB to destructively patch the

choice into the cell that M already has the virtual address of.
• It then gives a virtual address of the cell’s key to M, allowing it to unlock

the cell, obtaining the correct choice.

Simulator: Honest Party is Chooser

22

FCS 2025
Alley Stoughton

Simulator: Honest Party is Guesser

23

FCS 2025
Alley Stoughton

• When H receives the virtual address of a cell from M, it uses a special
feature of TCB to extract the cell’s boolean value, returning this choice
to C.

Simulator: Honest Party is Guesser

23

FCS 2025
Alley Stoughton

• When H receives the virtual address of a cell from M, it uses a special
feature of TCB to extract the cell’s boolean value, returning this choice
to C.

• C then replies with the guess, which H passes on to M, which should
send the virtual address of a key to H.

Simulator: Honest Party is Guesser

23

FCS 2025
Alley Stoughton

• When H receives the virtual address of a cell from M, it uses a special
feature of TCB to extract the cell’s boolean value, returning this choice
to C.

• C then replies with the guess, which H passes on to M, which should
send the virtual address of a key to H.

• If the key unlocks the cell, H returns an OK message to C, allowing C to
send the game result of the honest party to the adversary.

Simulator: Honest Party is Guesser

23

FCS 2025
Alley Stoughton

• When H receives the virtual address of a cell from M, it uses a special
feature of TCB to extract the cell’s boolean value, returning this choice
to C.

• C then replies with the guess, which H passes on to M, which should
send the virtual address of a key to H.

• If the key unlocks the cell, H returns an OK message to C, allowing C to
send the game result of the honest party to the adversary.

• Otherwise H sends an error result, and in both the real and ideal games
an error will be returned to the adversary as the honest party’s result.

Simulator: Honest Party is Guesser

23

FCS 2025
Alley Stoughton

module RealExper (Malicious : PARTY, Adv : ADV) =
 Exper(RealProtocol(Honest.Honest, Malicious), Adv).

module IdealExper (Malicious : PARTY, Adv : ADV) =
 Exper(IdealProtocol(Simulator(Malicious)), Adv).

lemma Security
 (Malicious <:
 PARTY{-RealProtocol, -Honest.Honest, -IdealProtocol, -Simulator})
 (Adv <:
 ADV
 {-RealProtocol, -Honest.Honest, -Malicious, -IdealProtocol, -Simulator})
 &m :
 Pr[RealExper(Malicious, Adv).main() @ &m : res] =
 Pr[IdealExper(Malicious, Adv).main() @ &m : res].

Absolute Security

24

annotations in red restrict
attention to modules that
don’t read or write global
variables of other modules

FCS 2025
Alley Stoughton

• When the honest party is the chooser, there is a relational invariant
saying how the data of TCB in the real protocol is related to the data of
TCB in the simulator.

• Everything is required to be equal, except for the presence of a cell in
TCB with the actual choice and the corresponding cell in TCB with value
true.

• The invariant says that M lacks a virtual address (of the physical
address) of the key that will unlock this cell.

Security Proof Invariants: TCB (Honest is Chooser)

25

FCS 2025
Alley Stoughton

• When the honest party is the guesser, where the data of TCB and TCB
will be equal, there is the additional invariant saying the boolean value in
the cell created by M, for which H/H has a virtual address, stays
constant.

• This is essential, because this value was extracted eagerly by H using
TCB, but can only be obtained by H once it has the virtual address of
the required key.

Security Proof Invariants: TCB (Honest is Guesser)

26

FCS 2025
Alley Stoughton

• We prove that calls to TCB’s procedures preserve these invariants,
which lets us prove that pairs of calls to M in the real and ideal games
preserve them.

Security Proof Invariants: TCB

27

FCS 2025
Alley Stoughton

• Finally, we have a complex relational invariant between the states of the
real and ideal games, which makes use of the TCB invariants.

• It tracks how the states evolve as the games proceed, and consists of a
disjunction with 16 disjuncts, some of which are existentials.

• The complexity partly stems from the behavior when M commits errors.
• We show that each matched pair of calls to the procedures of the real

and ideal protocols preserves this relational invariant, which lets us
conclude that an adversary can’t tell the games apart.

• ~3,800 lines of definitions, lemma statements and proofs.

Security Proof Invariants

28

FCS 2025
Alley Stoughton

• A challenging goal would be to prove the security of a Battleship
implementation based on security through indirection, building on the
methods used in our guessing game case study.

• The next talk by Jared Pincus is about ongoing development of a
program logic for real/ideal paradigm security based on data abstraction
and references.

Current and Future Work

29

FCS 2025
Alley Stoughton

GitHub Repository

30

https://github.com/alleystoughton/GuessingGame

